Skip to main content\(
\def\ppa{-- ++(10pt,0pt) -- ++(0pt,10pt) ++(5pt,-10pt)}
\def\ppb{-- ++(10pt,0pt) -- ++(0pt,10pt) ++(-10pt,0pt) -- ++(0pt,-10pt) ++(15pt,0pt)}
\def\ppc{-- ++(10pt,0pt) ++(-10pt,0pt) -- ++(0pt,10pt) ++(15pt,-10pt)}
\def\ppd{-- ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) ++(15pt,-10pt)}
\def\ppe{-- ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(15pt,0pt)}
\def\ppf{-- ++(10pt,0pt) ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(15pt,0pt)}
\def\ppg{ ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) ++(15pt,-10pt)}
\def\pph{ ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(15pt,0pt)}
\def\ppi{ ++(10pt,0pt) ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(15pt,0pt)}
\def\ppj{-- ++(10pt,0pt) -- ++(0pt,10pt) ++(-5pt,-5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppk{-- ++(10pt,0pt) -- ++(0pt,10pt) ++(-10pt,0pt) -- ++(0pt,-10pt) ++(5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppl{-- ++(10pt,0pt) ++(-10pt,0pt) -- ++(0pt,10pt) ++(5pt,-5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppm{-- ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) ++(5pt,-5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppn{-- ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppo{-- ++(10pt,0pt) ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppp{ ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) ++(5pt,-5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppq{ ++(10pt,0pt) -- ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppr{ ++(10pt,0pt) ++(0pt,10pt) -- ++(-10pt,0pt) -- ++(0pt,-10pt) ++(5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\pps{ ++(0pt,10pt) -- ++(5pt,-10pt) -- ++(5pt,10pt) ++(5pt,-10pt)}
\def\ppt{ ++(0pt,10pt) -- ++(10pt,-5pt) -- ++(-10pt,-5pt) ++(15pt,0pt)}
\def\ppu{ ++(10pt,10pt) -- ++(-10pt,-5pt) -- ++(10pt,-5pt) ++(5pt,0pt)}
\def\ppv{-- ++(5pt,10pt) -- ++(5pt,-10pt) ++(5pt,0pt)}
\def\ppw{ ++(0pt,10pt) -- ++(5pt,-10pt) -- ++(5pt,10pt) ++(-5pt,-5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppx{ ++(0pt,10pt) -- ++(10pt,-5pt) -- ++(-10pt,-5pt) ++(5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppy{ ++(10pt,10pt) -- ++(-10pt,-5pt) -- ++(10pt,-5pt) ++(-5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\def\ppz{-- ++(5pt,10pt) -- ++(5pt,-10pt) ++(-5pt,5pt) node {$\cdot$} ++(10pt,-5pt)}
\newcommand \sboxOne{
\mbox{
$
\begin{array}{|c|c|c|c|c|}\hline
\amp 00 \amp 01 \amp 10 \amp 11 \\ \hline
00 \amp 01 \amp 11 \amp 10 \amp 11 \\ \hline
01 \amp 11 \amp 10 \amp 01 \amp 00 \\ \hline
10 \amp 00 \amp 10 \amp 01 \amp 11 \\ \hline
11 \amp 11 \amp 01 \amp 11 \amp 10 \\ \hline
\end{array}
$
}
}
\newcommand \sboxTwo{
\mbox{
$
\begin{array}{|c|c|c|c|c|}\hline
\amp 00 \amp 01 \amp 10 \amp 11 \\ \hline
00 \amp 00 \amp 01 \amp 10 \amp 11 \\ \hline
01 \amp 10 \amp 00 \amp 01 \amp 11 \\ \hline
10 \amp 11 \amp 00 \amp 01 \amp 00 \\ \hline
11 \amp 10 \amp 01 \amp 10 \amp 11 \\ \hline
\end{array}
$
}
}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\)
Appendix C Blank Tables, Charts, and Images
Table C.0.1. Monoalphabetic Substitution Table
plain |
a |
b |
c |
d |
e |
f |
g |
h |
i |
CIPHER |
|
|
|
|
|
|
|
|
|
plain |
j |
k |
l |
m |
n |
o |
p |
q |
r |
CIPHER |
|
|
|
|
|
|
|
|
|
plain |
s |
t |
u |
v |
w |
x |
y |
z |
|
CIPHER |
|
|
|
|
|
|
|
|
|
Table C.0.2. A Numerical Alphabet
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
a |
b |
c |
d |
e |
f |
g |
h |
i |
10 |
20 |
30 |
40 |
50 |
60 |
70 |
80 |
90 |
j |
k |
l |
m |
n |
o |
p |
q |
r |
100 |
200 |
300 |
400 |
500 |
600 |
700 |
800 |
900 |
s |
t |
u |
v |
w |
x |
y |
z |
|
Figure C.0.3. Axes for Mapping Letter Frequencies
Figure C.0.4. Blank Tables for Frequency Counts
Figure C.0.5. Alberti's Cipher Disk or “Formula”
Figure C.0.6. Modern Cipher Disk or “Formula”
Figure C.0.7. Vigenère's Tableau
Figure C.0.8. Updated Vigenère Tableau
Figure C.0.9. Vigenère's Autokey Tableau
Figure C.0.10. Pigpen Cipher KeyTable C.0.11. Falconer's Transposition Table
|
|
A |
B |
C |
1 |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
2 |
|
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
3 |
|
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
4 |
|
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
5 |
|
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
6 |
|
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
\(\phantom{WWWWW}\) |
Figure C.0.12. Kasiski Key Table
Figure C.0.13. International Telegraph Alphabet 2 ca. 1924
Figure C.0.14. Multiplication table modulo 26Table C.0.15. ASCII Code Chart
\(b_7\, b_6\, b_5 \rightarrow \) |
000 |
001 |
010 |
011 |
100 |
101 |
110 |
111 |
\(\downarrow b_4\, b_3\, b_2\, b_1\) |
0 |
16 |
32 |
48 |
64 |
80 |
96 |
112 |
0000 |
0 |
NUL |
DLE |
␣ |
0 |
@ |
P |
` |
p |
0001 |
1 |
SOH |
DC1 |
! |
1 |
A |
Q |
a |
q |
0010 |
2 |
STX |
DC2 |
" |
2 |
B |
R |
b |
r |
0011 |
3 |
ETX |
DC3 |
# |
3 |
C |
S |
c |
s |
0100 |
4 |
EOT |
DC4 |
$ |
4 |
D |
T |
d |
t |
0101 |
5 |
ENQ |
NAK |
% |
5 |
E |
U |
e |
u |
0110 |
6 |
ACK |
SYN |
& |
6 |
F |
V |
f |
v |
0111 |
7 |
BEL |
ETB |
' |
7 |
G |
W |
g |
w |
1000 |
8 |
BS |
CAN |
( |
8 |
H |
X |
h |
x |
1001 |
9 |
TAB |
EOM |
) |
9 |
I |
Y |
i |
y |
1010 |
10 |
LF |
SUB |
* |
: |
J |
Z |
j |
z |
1011 |
11 |
VT |
ESC |
+ |
; |
K |
[ |
k |
\(\{\) |
1100 |
12 |
FF |
FS |
, |
< |
L |
\(\backslash\) |
l |
| |
1101 |
13 |
CR |
GS |
- |
= |
M |
] |
m |
\(\}\) |
1110 |
14 |
SO |
RS |
. |
> |
N |
\(\wedge\) |
n |
\(\sim\) |
1111 |
15 |
SI |
US |
/ |
? |
O |
\(\_\) |
o |
DEL |
Figure C.0.16. Outline of a Feistel Cipher
Figure C.0.17. A Highly Simplified two step DES
Figure C.0.18. NATO Phonetic Alphabet (from Wikimedia Commons)