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Finite Automata

State Diagram and Finite Automaton
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States: Q = {q0, q1, q2, q3, q4}

Alphabet: Σ = {0, 1}
Start State: q0

Accept States: F = {q3, q4}
Language: L = {1 ∗ 0, 0 ∗ 1}
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Finite Automata

Formal Definition

Definition (Finite Automaton)
A finite automaton is a 5-tuple (Q,Σ, δ, q0,F), where

1 Q is a finite set of states,
2 Σ is a finite alphabet,
3 δ ∶ Q × Σ → Q is the transition function,
4 qo ∈ Q is the start or initial state, and
5 F ⊆ Q is the set of accept or final states.
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Finite Automata

Transition Function
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δ ∶ Q × Σ → Q
δ 0 1
q0 q1 q2
q1 q1 q3
q2 q4 q2
q3 q1 q3
q4 q4 q2
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Finite Automata

Another Example

opStartstart
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d2
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op

op
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op

digit

Σ

Q = {Start, d1, d2, op, fail}
Σ = op ∪ digit

op = {+,−,×}
digit = {0, 1, 2, . . . , 9}

F = {d2}
L=?

w = 25 + 362
w = ×35 − 67
w = 265 − 456 × 18

The language L is called a regular language because is is recognized by
a finite automaton.
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Finite Automata

Satisfying a Description

Problem
Construct a finite automaton that accepts only words in Σ = {0, 1} ending in 101.

q101q10q1q0start 1 0 1

0 1

0

1

0
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Finite Automata

Satisfying a Description

Problem
Construct a finite automaton that accepts only words in Σ = {0, 1} ending in 101.

q101q10q1q0start 1 0 1

0 1

0
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0

Check what happens to 101 independent of where we start.
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Finite Automata

Satisfying a Description

Problem
Construct a finite automaton that accepts only words in Σ = {0, 1} ending in 101.

q101q10q1q0start 1 0 1

0 1

0

1

0

Note that this means we don’t need to “remember” the whole string to
check its ending.
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New From Old

Creating New Automata

Definition
Let A and B be regular languages. We define the regular operations
union, concatenation, and star as follows:

Union: A ∪ B = {x∣x ∈ A or x ∈ B}
Concatenation: A ◦ B = {xy∣x ∈ A and y ∈ B}
Star : A∗

= {x1x2⋯xk∣k ≥ 0 and ∀i xi ∈ A}

A = {0, 1}
B = {a, b}
A ∪ B = {0, 1, a, b}
A ◦ B = {0a, 0b, 1a, 1b}
A∗

= {ε, 0, 1, 00, 01, , 10, 11, 000, . . .}
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New From Old

Details on Union

Given to finite automata

M1 = (Q1,Σ1, δ1, q1,F1) and M2 = (Q2,Σ2, δ2, q2,F2)

their union is constructed as follows:
Q = Q1 × Q2

Σ = Σ1 ∪ Σ2

∀(r1, r2) ∈ Q ∀a ∈ Σ ∶ δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))
q0 = (q1, q2)
F = {(r1, r2)∣r1 ∈ F1 or r2 ∈ F2}

(Note r1 ∈ F1 and r2 ∈ F2 would be intersection)
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New From Old

Union Example

What words do each of these DFAs recognize? Before we begin we will need to adjust them to
use the same alphabet.

n1start n0

la

start

lb

n1, lastart

n1, lb

n0, la

n0, lb

0

1

1

0

b

a

a

b

0

1, a, b

1, a, b

0

b

0, 1, a

0, 1, a

b

1, a

b

0

b

1, a
0

0

b

1, a
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New From Old

Union Example
To simplify the problem we change one to accept words ending in 0 and the other to be
words ending in b. This changes the problem slightly but makes a cleaner example.
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Non-Deterministic vs. Deterministic

Non-Deterministic Automata
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q0 q0

q0 q0
1

q11

q0 q0
1ε

δ 0 1 ε
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Non-Deterministic vs. Deterministic

Equivalence to Deterministic (Slide 1)

1

start

2 3

b
ε

a a, b

a

Q = {1, 2, 3}
Σε = {a, b, ε}
Start = {1}
F = {1}

δ a b ε

1 ∅ {2} {3}
2 {2,3} {3} ∅
3 {1} ∅ ∅

Q ′
= P(Q) (Power set of Q)

Σ
′
= {a, b}

E({1}) = {1, 3} (states reached from 1 using ε)
Start = {1, 3}
F ′

= {{1}, {1, 2}, {1, 3}, {1, 2, 3}}
δ
′
=?
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Non-Deterministic vs. Deterministic

Equivalence to Deterministic (Slide 2)

δ a b ε

1 ∅ {2} {3}
2 {2,3} {3} ∅
3 {1} ∅ ∅

∅ {1} {2} {1,2}

{3} {1,3}

start

{2,3} {1,2,3}

a, b a b

ab

a

b
a, b

a

b

a

b

a

b

We can eliminate states that are only “sources.”
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Non-Deterministic vs. Deterministic
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New From Old (again)

Union Revisited: A ∪ B
Assume that the regular language A is represented by the finite automaton
N and the regular language B is represented by the finite automaton M,
then their union can be represented as below.

q0

start

q1

start N

q2

start M

ε ε

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ1(q, a) q ∈ Q1
δ2(q, a) q ∈ Q2
{q1, q2} q = q0 ∧ a = ε
∅ q = q0 ∧ a ≠ ε
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New From Old (again)

Concatenation: A ◦ B

Assume that the regular language A is represented by the finite automaton
N and the regular language B is represented by the finite automaton M,
then their concatenation can be represented as below.

q1

start N q2

start M
ε

ε
ε

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 ∧ q /∈ F1
δ1(q, a) q ∈ F1 ∧ a ≠ ε
δ1(q, a) ∪ {q2} q ∈ F1 ∧ a = ε
δ2(q, a) q ∈ Q2

C. F. Rocca Jr. (WCSU) Finite Automata 21 / 25



New From Old (again)

Concatenation: A ◦ B

Assume that the regular language A is represented by the finite automaton
N and the regular language B is represented by the finite automaton M,
then their concatenation can be represented as below.

q1

start N q2

start M
ε

ε
ε

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 ∧ q /∈ F1
δ1(q, a) q ∈ F1 ∧ a ≠ ε
δ1(q, a) ∪ {q2} q ∈ F1 ∧ a = ε
δ2(q, a) q ∈ Q2

C. F. Rocca Jr. (WCSU) Finite Automata 21 / 25



New From Old (again)

Concatenation: A ◦ B

Assume that the regular language A is represented by the finite automaton
N and the regular language B is represented by the finite automaton M,
then their concatenation can be represented as below.

q1

start N q2

start M
ε

ε
ε

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 ∧ q /∈ F1
δ1(q, a) q ∈ F1 ∧ a ≠ ε
δ1(q, a) ∪ {q2} q ∈ F1 ∧ a = ε
δ2(q, a) q ∈ Q2

C. F. Rocca Jr. (WCSU) Finite Automata 21 / 25



New From Old (again)

Concatenation: A ◦ B

Assume that the regular language A is represented by the finite automaton
N and the regular language B is represented by the finite automaton M,
then their concatenation can be represented as below.

q1

start N q2

start M
ε

ε
ε

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 ∧ q /∈ F1
δ1(q, a) q ∈ F1 ∧ a ≠ ε
δ1(q, a) ∪ {q2} q ∈ F1 ∧ a = ε
δ2(q, a) q ∈ Q2

C. F. Rocca Jr. (WCSU) Finite Automata 21 / 25



New From Old (again)

Concatenation: A ◦ B

Assume that the regular language A is represented by the finite automaton
N and the regular language B is represented by the finite automaton M,
then their concatenation can be represented as below.

q1

start N q2

start M
ε

ε
ε

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 ∧ q /∈ F1
δ1(q, a) q ∈ F1 ∧ a ≠ ε
δ1(q, a) ∪ {q2} q ∈ F1 ∧ a = ε
δ2(q, a) q ∈ Q2
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New From Old (again)

Star: A∗

Assume that the regular language A is represented by the finite automaton
N then the unary star, ∗, operator applied to A can be represented as
below.

q0start q1

start N
ε

ε

ε
ε

δ(q, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

δ1(q, a) q ∈ Q1 ∧ a /∈ F1
δ1(q, a) q ∈ F1 ∧ a ≠ ε
δ1(q, a) ∪ {q1} q ∈ F1 ∧ a = ε
{q1} q = q0 ∧ a = ε
∅ q = q0 ∧ a ≠ ε
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