

Dr. Charles Rocca
Higgins Hall 101D
roccac@wcsu.edu
<http://sites.wcsu.edu/roccac>

MAT 359-71: Theory of Computation
M 5:30-8:00 pm, Higgins 117
Credits: 3 credits
Grading: Standard A-F

Office Hours:

Office hours for the Spring 2016 Semester are on ground in Higgins 101D.

- MTWF 12:45-1:45 pm
- W 3:30-4:30 pm
- or by appointment

If you need to meet virtually we can make an appointment to do so via my WebEx Virtual Office:
[Higgins 101-DV](https://westconn.webex.com/meet/roccac) (<https://westconn.webex.com/meet/roccac>)

Course Materials:

For this course you will need:

- “*Introduction to the Theory of Computation, 3rd ed.*” by Michael Sipser
- A notebook which you need to bring to every class.

Course Description and Outcomes:

Basic theoretical principles embodied in formal languages, automata and computability.

After completing this course students will be able to

- Describe the differences between finite automata, pushdown automata, and Turing machines and the hierarchy of formal languages (regular, context-free, recursively enumerable, recursive) recognizable by these classes of machines.
- Describe the correspondence of the above hierarchy of formal languages with levels of the Chomsky hierarchy of formal grammars (regular, context-free, unrestricted), and Describe/ perform algorithms to convert a grammar to the appropriate kind of automaton, and vice-versa.
- Describe/perform algorithms to convert non-deterministic finite automata to equivalent deterministic finite automata, and non-deterministic Turing machines to equivalent deterministic Turing machines.
- Perform algorithms to convert regular expressions to finite automata and vice-versa, and explain the role of these algorithms in proving that a language is regular if and only if it is represented by a regular expression.
- Demonstrate a language’s place in the Chomsky hierarchy by constructing an appropriate automaton, grammar, or regular expression, and by using pumping theorems or other means to show that a language is not regular or not context-free.
- Describe the halting problem and explain why it is undecidable
- Describe the Church-Turing thesis and supporting evidence

Course Content:

In this course we will cover the material on automata, languages, and computability theory from chapters 0 through 5 and possibly 7 in “*Introduction to the Theory of Computation, 3rd ed.*” by Michael Sipser.

The author of your text, Michael Sipser, has made material from his version of this course available at <https://ocw.mit.edu/courses/18-404j-theory-of-computation-fall-2020/>. The material in this course *roughly* corresponds to lectures 1 through 10, 12, 14 and possibly 15 in Sipser’s course; this course spends time on review (chapter 0). I encourage you to look at Sipser’s [Lecture Notes](#) and [Video Lectures](#) in order to get a perspective different from my own.

Assessments and Grades:

Your grade in this class will be a weighted average as follows:

- 40% Quizzes
- 60% Unit Exams

Quizzes (40%): You will have about ten quizzes this semester. These will be at the start of class on days when you don't have an exam and will check how well you understood/reviewed the material from the previous class. These will focus on basic knowledge and skills. The lowest three quizzes will be dropped.

Exam Collaboration: At the start of each exam you will be given 10 minutes during which you can look it over and discuss the exam with your fellow students. During this time you cannot write down anything on the exam, or other paper, and you cannot use your calculator. Once the 10 minutes are up you will need to complete the exam on your own.

Unit Exams (60%): You will have two unit exams. These will be comprehensive exams covering all the content in a unit. Eighty-five percent of each exam will be based on fairly routine questions, similar to quiz questions. The other fifteen percent of each exam will be from three challenge questions intended to check the depth of your knowledge.

- Unit 1 Challenge Questions: Chapter 0: 0.7, 0.11, 0.14; Chapter 1: 1.12, subset of 1.24-1.27, 1.40; Chapter 2: 2.2, 2.18, 2.20, 2.26; Chapter 3: 3.7, 3.9, 3.10
- Unit 2 Challenge Questions: Chapter 4: 4.4, 4.7, 4.9; Chapter 5: 5.4, 5.7; Chapter 7: TBA

Exam Redos: For the Unit 1 Exam you will be allowed to redo some specific questions in order to earn back up to 40% of the points you lost. Which questions you redo and how many questions you redo will depend on how you did on the exam. Redos are due within one week of when the exams are handed back, you must turn in the original exam stapled on top of the redos, and for each question you redo you must include a sentence or two explaining what you did wrong. Ten percent of your grade on these will be based on the quality of your work; they must be typed with answers in complete sentences.

Class Calendar:

MONDAY	
1/26	1
Syllabus, Review Sections 0.1 - 0.4	
2/2	2
Sections 1.1 & 1.2 & Quiz 1	
2/9	3
Sections 1.2 & 1.3 & Quiz 2	
2/16	
Presidents' Day - No Class	
2/23	4
Sections 1.3 & 1.4 & Quiz 3	
3/2	5
Sections 2.1 & 2.2 & Quiz 4	
3/9	6
Sections 2.3 & 3.1 & Quiz 5	
3/16	
Spring Break - No Class	
3/23	7
Sections 3.1 & 3.2 & No Quiz	
3/30	8
Sections 3.3 & Clean Up, & Quiz 6	
4/6	9
Exam 1: Automata, Languages, and Turing Machines (Chapters 1, 2, & 3)	

MONDAY	
4/13	10
Sections 4.1 & 4.2	
4/20	11
Sections 5.1-5.3 & Quiz 7	
4/27	12
Sections 7.1 & 7.2 & Quiz 8	
5/4	13
Sections 7.3, possibly 7.4 & Clean Up & Quiz 9	
5/11	14
Exam 2: Computability Theory Plus (75% from Chapters 4, 5, & 7 and 25% from Unit 1)	

Departmental Course Outline:

- I. Introduction to formal languages and automata
 - 1. Strings and languages over a finite alphabet
 - 2. Automata for language recognition purposes
- II. Finite Automata and regular languages
 - 1. Deterministic Finite Automata (DFAs)
 - (a) Deterministic Finite Automata (DFAs) and definition of regular language
 - (b) Non-deterministic Finite Automata (NFAs)
 - (c) Equivalence of NFAs and DFAs.
 - 2. Regular Grammars (RGs)
 - (a) Definition and examples
 - (b) Equivalence of RGs and NFAs
 - 3. Some operations on languages which preserve regularity
 - (a) complement
 - (b) union and intersection
 - (c) reversal
 - (d) concatenation
 - (e) Kleene star
 - 4. Regular Expressions
 - (a) Recursive definition of regular expression
 - (b) Regular expressions determine languages
 - (c) Equivalence of regular expressions with NFAs
 - 5. Non-regular languages
 - (a) There are uncountably many languages over a given alphabet but only countably many DFAs
 - (b) Pumping theorem for regular languages
 - (c) Examples of languages that are not regular
- III. Pushdown automata and context-free languages
 - 1. Pushdown Automata (PDAs)
 - (a) definition and examples
 - (b) definition of context-free language, and examples
 - (c) every regular language is context-free but not conversely
 - (d) optional: Some PDAs are necessarily non deterministic
 - 2. Context-free Grammars (CFGs)
 - (a) Definition and examples
 - (b) Equivalence of CFGs and PDAs
 - 3. Some closure properties of the set of context-free languages
 - (a) Union
 - (b) Concatenation
 - (c) Star
 - (d) Reversal
 - (e) Intersection and complement do not preserve context-free languages
 - 4. Non-context-free languages
 - (a) Pumping theorem for context-free languages
 - (b) Examples of languages that are not context-free
- IV. Turing machines, Turing-acceptable languages, and Turing-decidable languages
 - 1. Turing machines (TMs)
 - (a) Definition and examples of TMs
 - (b) Modular construction of TMs from basic building blocks
 - (c) Examples which demonstrate that TMs can calculate
 - 2. TMs (and variations of TMs) for language recognition
 - (a) Turing-recognizable (TR) and Turing-decidable (TD) languages
 - (b) Multitape TMs accept TR languages
 - (c) Nondeterministic TMs accept TR languages
 - (d) Context-free languages are TD
 - (e) A language is TD if and only if both it and its complement are TR
 - 3. Unrestricted grammars
 - (a) Examples
 - (b) Unrestricted grammars generate precisely the TR languages
 - 4. Universal TMs and the halting problem
 - (a) Encoding TMs as binary strings
 - (b) Self-terminating TMs
 - (c) The Halting Problem and existence of undecidable languages.
 - 5. The Church-Turing Thesis and supporting evidence
 - (a) Turing-computable functions
 - (b) the Church-Turing Thesis
 - (c) Notion of recursive functions and equivalence with Turing-computable functions
 - (d) Recursively enumerable languages and recursive languages, and equivalence of these with TR languages and TD languages
 - (e) More supporting evidence for the Church-Turing thesis

End User Agreement:

General Expectations: As a student in this class you are expected to:

- attend class and take notes,
- actively read material in each section, taking notes,
- review your notes on a regular basis,
- check your university email every day,
- check the class site **at least** every other day,
- begin studying for exams in a timely fashion,
- ask questions early and often,
- attend office hours,
- seek help in the math clinic, and
- complete assignments and readings on time.

Assignment Guidelines: (These apply to **all out of class work** done on paper.)

- Work done outside of class must always look neat, legible, and professional, adhering to given guidelines. Work must be very neatly written or preferably typed. The quality of your work will be factored into your grade, up to 10%. In extreme cases work may be rejected and then counted as late.
- An assignment is considered late after I have handed it back or gone over it in class. Late assignments are accepted but may receive at most 75% credit. Late assignments go to the absolute bottom of the stack of papers to be graded; **all on time work is graded before any late work.**
- If you work on an assignment as part of a group, then there may be no more than three individuals in the group and all your names must be on the assignment. You should hand in only one copy of the work.
- All work must be submitted in the manner directed.

Email Etiquette Guidelines: When sending an email you must include the course number and semester in the subject line. For example, if you are taking MAT 314 in Fall 1592 then the subject line should begin with “[MAT 314 Fall 1592].” Also, you should always begin with a salutation such as “Dear Dr. Rocca” and end with a closing such as “Sincerely, I. Newton.”

Technology Use: You are free to use tablets, computers, or voice recorders in the classroom to support the learning of the content, i.e. for note taking, recording, taking pictures of the board etc.. ***Cell phones are not allowed as they are a consistent distraction.*** Technology use will be further restricted if it becomes disruptive, a distraction, or invades others privacy.

Exam Makeup Policy: To qualify for a makeup exam you must have a valid reason for missing the exam and, if at all possible, let me know ahead of time that you are missing the exam. You will need to meet with me in order to arrange a time for a make up exam. If you do not have a valid reason, do not give prior notice when possible, or simply do not show up for an exam, you are not entitled to a makeup. If you fail to show up for your makeup exam, you will not be given a second opportunity.

Time on Task: As a 3 credit class you should expect to average 7.5 to 8.5 hours of work a week including class time. Some weeks you may get away with less and some may require more.

Attendance: Unless otherwise stated, there is no specific policy for attendance in this course. However, if you have **three consecutive unexcused absences** I am required to report to the University that you have **stopped attending**. Also, if you arrive late to class, after I have taken attendance, you are responsible for sending me an email to let me know you were there but late.

Academic Honesty: If on any assignment, quiz, or exam you turn in someone else’s work, regardless of the source, as if it were your own you will receive a zero on that assignment, quiz, or exam. If you are caught doing this three times you will receive an F in the course and the Dean will be informed of your academic dishonesty.
(<https://www.wcsu.edu/faculty-handbook/2019-2020/policies-pertaining-to-students/academic-honesty-policy/>)

Accommodations: If you have need of an accommodation for testing or note taking, please visit AccessAbility Services, located in the HAAS Library room 406 (<http://www.wcsu.edu/accessibility>).

You and Your Grades:

- “A” (Exceptional) range 90% to 100%:

The student has demonstrated significant mastery of the appropriate knowledge and skills relevant to the course. The student is able to solve standard formulaic exercises and most nonstandard problems which require deeper insight.

- “B” (Good) range 80% to 90%:

The student has demonstrated mastery of the appropriate knowledge and skills relevant to the course. The student is able to solve standard formulaic exercises and some nonstandard problems which require deeper insight.

- “C” (Adequate) range 70% to 80%:

The student has demonstrated adequate mastery of the appropriate knowledge and skills relevant to the course. The student is able to solve most standard formulaic exercises but struggles with nonstandard problems which require deeper insight.

- “D” (Inadequate) range 60% to 70%:

The student has demonstrated inadequate or incomplete mastery of the appropriate knowledge and skills relevant to the course. The student is able to solve some standard formulaic exercises but few if any nonstandard problems which require deeper insight.

- “F” (Unacceptable) below 60%:

The student has demonstrated essentially no mastery of the appropriate knowledge and skills relevant to the course. The student is unable to solve most standard formulaic exercises and essentially no nonstandard problems which require deeper insight.

Inspire Your Professors:

What to do:

- Show up, on time, ready to learn.
- Ask, and try to answer, questions.
- Put in the time and do the scut work.
- Seek help when you need it, utilize the resources available to you.
- Be an active participant in class and in your own education.
- Be curious about everything and be here to learn.

What not to do:

- Don’t ask “What is this good for?” or “Did I miss anything?” or “Does this have to be so hard?”
- Don’t say “I don’t get it.”
- Don’t fiddle with your phone or computer.
- Don’t wander in late and rush out early.
- Don’t disappear for extended periods of time in the middle of class.
- Try not to repeat questions that have just been asked and answered, sometimes multiple times.
- Don’t just grub for points.
- Don’t be a passive passenger to your own education.