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Oracle Machines

Oracles

Definition

An oracle for a language B is an external device that is capable of always
deciding membership in B. An oracle Turing machine is a modification
of a Turing machine M denoted MB that has the added ability to query an
oracle for B.

MB=“On input w:

1 Query the oracle for B to determine if w ∈ B.
2 If the oracle answers YES, accept; if NO, reject.”
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=“On input w:

1 Query the oracle for B to determine if w ∈ B.
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Oracle Machines

ETM and ATM

TATM=”On input ⟨M⟩, where M is a TM:

1 Construct the TM N.
N =”On any input:

1 Run M in parallel on all strings in Σ∗.
2 If M accepts any of these strings, accept.”

2 Query the oracle for ATM to determine if ⟨N, 0⟩ ∈ ATM .
3 If the oracle answers NO, accept; if YES, reject.”

Can an oracle for ATM actually exist?
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Oracle Machines

Turing Reducible

Definition

A language A is Turing decidable relative to B if there exists an oracle
machine MB which decides A. If this is the case we say that A is Turing
reducible to B and write A ≤T B.

For all machines A: A ≤T A

For all machines A and their compliments A: A ≤T A

ETM ≤T ATM
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Oracle Machines

Turing Reduction vs. Mapping Reduction

Recall, A is mapping reducible to B, A ≤m B, if there is a computable
function f such that

w ∈ A ⇔ f (w) ∈ B.

That is, if we can change questions about A into questions about B in
some computable way. It is “clear” that A ≤m B ⇒ A ≤T B.

MB=“On input w:

1 Query the oracle for B to determine if f (w) ∈ B.
2 If the oracle answers YES, accept; if NO, reject.”
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Oracle Machines

Turing Reduction vs. Mapping Reduction

Theorem

There exists A and B such that A ≤T B and A ̸≤m B.

A = ATM

B = ATM

ATM ≤T ATM

If ATM ≤m ATM , then ATM would be recognizable, a contradiction.
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Oracle Machines

Problem 6.3 Transitivity

Theorem

If A ≤T B and B ≤T C, then A ≤T C

Suppose MB
1 decides if w ∈ A using an oracle for B.

Suppose MC
2 decides if w ∈ B using an oracle for C .

Define MC
3 by replacing the oracle for B in MB

1 with MC
2 .
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3 by replacing the oracle for B in MB
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2 .

MB
1 =“On input w: Query the oracle for B to determine if w ∈ B

and so also in A.”

MC
2 =“On input w: Query the oracle for C to determine if w ∈ C

and so also in B.”
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Oracle Machines

Decidability

Theorem

If A ≤T B and B is decidable, then A is decidable.

Given an oracle TM MB which decides A, replace the oracle for B with
the decider for B.
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Information

Comments of Information

A = 1010101010101010101010101010

B = 1101010101010010110000110010

A is “clearly” compressible where as B is not

M =”On input w and n ∈ N: repeat w n times.”
A = M(“10”, 14)

⟨M, “01”, 14⟩
| ⟨M, “10”, 14⟩ | = 1011 0110 11101010001 · · · 11101010 10 1110

| ⟨M⟩ | ⟨M⟩ “10” 14
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Information

Information and Minimal Descriptions

Definition

The minimal description of a binary string x , written d(x), is the
shortest string ⟨M,w⟩ where the TM M prints x on input w . The
descriptive complexity of x , K (x), is K (x) = |d(x)|.
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Information

Upper Bound for x and xx

Theorem

For any binary string x

∃c0∀x : K (x) ≤ |x |+ c0

and
∃c1∀x : K (xx) ≤ K (x) + c1

c0 is the length of a Turing machine that outputs its input x (the
identity function).

c1 is the length of a machine that runs a Turing machine N on input
w and prints the result twice; we run this on d(x), the minimal
description of x .
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Information

Bounding xy

Suppose x = 1010 and y = 1101;
we could represent ⟨xy⟩ by

11001100 01 1101

110000 01 1010 1101

Then ∃c∀x , y so that K (xy) = |d(xy)| is
bounded by

2K (x) + K (y) + c

2 log2(K (x)) + K (x) + K (y) + c

20 40 60 80 100

100

200

300
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Information

Descriptive Languages

Theorem

For any descriptive language p (programming language or language
language), a fixed constant exists that depends only on p such that

∀x : K (x) ≤ Kp(x) + c ,

where Kp(x) = |dp(x)| is the descriptive complexity of a program in
language p which prints x.

Let Kp(x) = |dp(x)| as above.
Let M be an interpreter for p with | ⟨M⟩ | = c .

Then, ⟨M⟩ dp(x) prints x and

K (x) ≤ Kp(x) + | ⟨M⟩ | = Kp(x) + c
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Incompressibility

c-Compressible

Definition

Given a string x and constant c we say that x is c-compressible if

K (x) ≤ |x | − c .

If x is not c-compressible, we say that x is incompressible by c . If x is
incompressible by 1, we say that x is incompressible.

A = 1010101010101010101010101010

B = 1101010101010010110000110010

xy = 11001100 01 1101

xy = 110000 01 1010 1101

C. F. Rocca Jr. (WCSU) Reducibility and Information 18 / 28



Incompressibility

c-Compressible

Definition

Given a string x and constant c we say that x is c-compressible if

K (x) ≤ |x | − c .

If x is not c-compressible, we say that x is incompressible by c . If x is
incompressible by 1, we say that x is incompressible.

A = 1010101010101010101010101010

B = 1101010101010010110000110010

xy = 11001100 01 1101

xy = 110000 01 1010 1101

C. F. Rocca Jr. (WCSU) Reducibility and Information 18 / 28



Incompressibility

c-Compressible

Definition

Given a string x and constant c we say that x is c-compressible if

K (x) ≤ |x | − c .

If x is not c-compressible, we say that x is incompressible by c . If x is
incompressible by 1, we say that x is incompressible.

A = 1010101010101010101010101010

B = 1101010101010010110000110010

xy = 11001100 01 1101

xy = 110000 01 1010 1101

C. F. Rocca Jr. (WCSU) Reducibility and Information 18 / 28



Incompressibility

c-Compressible

Definition

Given a string x and constant c we say that x is c-compressible if

K (x) ≤ |x | − c .

If x is not c-compressible, we say that x is incompressible by c . If x is
incompressible by 1, we say that x is incompressible.

A = 1010101010101010101010101010

B = 1101010101010010110000110010

xy = 11001100 01 1101

xy = 110000 01 1010 1101

C. F. Rocca Jr. (WCSU) Reducibility and Information 18 / 28



Incompressibility

c-Compressible

Definition

Given a string x and constant c we say that x is c-compressible if

K (x) ≤ |x | − c .

If x is not c-compressible, we say that x is incompressible by c . If x is
incompressible by 1, we say that x is incompressible.

A = 1010101010101010101010101010

B = 1101010101010010110000110010

xy = 11001100 01 1101

xy = 110000 01 1010 1101

C. F. Rocca Jr. (WCSU) Reducibility and Information 18 / 28



Incompressibility

Incompressible by c

Theorem

There exists at least 2n − (2n−c+1 − 1) strings of length n which are
incompressible by c.

2n strings of length n∑n−c
i=0 2i = 1 + 2 + 4 + · · ·+ 2n−c = 2n−c+1 − 1

# of “c-shorter” descriptions < # of length n descriptions

∴ there exists strings incompressible by c

Specifically, 2n − (2n−c+1 − 1)
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Incompressibility

Incompressible Strings

Corollary

There exists incompressible strings.

let c = 1 and apply the theorem

∴ there exists incompressible strings
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Incompressibility

Computable Properties and Compressibility

Definition

A property of a string x is a binary function f , i.e. x either has the
property or it does not. Given Fn = {x |f (x) = FALSE and |x | ≤ n}, a
property holds for almost all strings if

|Fn|
|All Strings with |x | ≤ n|

−→ 0

as n goes to infinity.
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Incompressibility

Computable Properties and Compressibility

Theorem

Given a computable property f that holds for almost all strings, and
b > 0, then the property f is FALSE for only finitely many strings that are
incompressible by b.
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Incompressibility

Computable Properties and Compressibility (proof part 1)

Fn = {x |f (x) = FALSE and |x | ≤ n}

F∞ = {x |f (x) = FALSE}, F∞ is enumerable

Let M be a machine that finds the i th string s in F∞

For each x ∈ F∞, let ix be its position in F∞

Thus ⟨M, ix⟩ returns x and |d(x)| = K (x) ≤ |ix |+ c

Choose n so that

|Fn|
|All Strings with |x | ≤ n|

≤ 1

2b+c+1
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Incompressibility

Computable Properties and Compressibility (proof part 2)

Choose n so that

|Fn|
|All Strings with |x | ≤ n|

≤ 1

2b+c+1

There are 2n+1 − 1 strings of length n, so

ix ≤ 2n+1 − 1

2b+c+1
<

2n+1

2b+c+1
= 2n−b−c

Then for all x such that |x | ≥ n and f (x) = FALSE

|d(x)| = K (x) ≤ |ix |+ c ≤ (n − b − c) + c = n − b

∴ If x is incompressible by b, then its length is less than n, so
there are only finitely many such x .
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Incompressibility

Nearly Incompressible

Theorem

There exists b > 0, for all strings x, such that the minimal description
d(x) of x is incompressible by b.

Define a machine M:
M =“On input ⟨R, y⟩:

1 Run R on y and reject if the output is not of the form ⟨S , z⟩.
2 Run S on z and halt with its output on the tape.”

Let b = | ⟨M⟩ |+ 1 so that | ⟨M⟩ | = b − 1

If d(x) is b-compressible:

| ⟨M, d(d(x)⟩ | ≤ | ⟨M⟩ |+ |d(d(x))|
≤ (b − 1) + |d(x)| − b = |d(x)| − 1

But d(x) is minimal, so this is a contradiction.
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Have a Good Summer
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Reducibility and Information

Dr. Chuck Rocca
roccac@wcsu.edu

http://sites.wcsu.edu/roccac
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