Reducibility and Information

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

æ

▶ ∢ ∃ ▶

C. F. Rocca Jr. (WCSU)

Table of Contents

E ► < E ►

-

Image: A matrix

Table of Contents

E ► < E ►

-

Image: A matrix

C. F. Rocca Jr. (WCSU)

Oracles

Definition

An **oracle** for a language B is an external device that is capable of always deciding membership in B. An **oracle Turing machine** is a modification of a Turing machine M denoted M^B that has the added ability to query an oracle for B.

Oracles

Definition

An **oracle** for a language B is an external device that is capable of always deciding membership in B. An **oracle Turing machine** is a modification of a Turing machine M denoted M^B that has the added ability to query an oracle for B.

$M^B = "On input w:$

- Query the oracle for B to determine if $w \in B$.
- If the oracle answers YES, accept; if NO, reject."

Oracles

Definition

An **oracle** for a language B is an external device that is capable of always deciding membership in B. An **oracle Turing machine** is a modification of a Turing machine M denoted M^B that has the added ability to query an oracle for B.

- $\overline{M}^B = "On input w:$
 - **Query the oracle for B to determine if** $w \in B$.
 - If the oracle answers NO, accept; if YES, reject."

 $T^{A_{TM}} = "On input \langle M \rangle$, where M is a TM:

- Construct the TM N.
 - N = "On any input:
 - Run M in parallel on all strings in Σ*.
 - If M accepts any of these strings, accept."
- **2** Query the oracle for A_{TM} to determine if $\langle N, 0 \rangle \in A_{TM}$.
- If the oracle answers NO, accept; if YES, reject."

 $T^{A_{TM}} =$ "On input $\langle M \rangle$, where M is a TM:

- Construct the TM N.
 - N = "On any input:
 - Run M in parallel on all strings in Σ*.
 - If M accepts any of these strings, accept."
- **2** Query the oracle for A_{TM} to determine if $\langle N, 0 \rangle \in A_{TM}$.
- If the oracle answers NO, accept; if YES, reject."

 $T^{A_{TM}} =$ "On input $\langle M \rangle$, where M is a TM:

- Construct the TM N. N ="On any input:
 - Pup M in parallel on all string
 - Run M in parallel on all strings in Σ^* .
 - If M accepts any of these strings, accept."
- **2** Query the oracle for A_{TM} to determine if $\langle N, 0 \rangle \in A_{TM}$.
- If the oracle answers NO, accept; if YES, reject."

 $T^{A_{TM}} = "On input \langle M \rangle$, where M is a TM:

- Construct the TM N.
 - N = "On any input:
 - Run M in parallel on all strings in Σ*.
 - If M accepts any of these strings, accept."
- **2** Query the oracle for A_{TM} to determine if $\langle N, 0 \rangle \in A_{TM}$.
- If the oracle answers NO, accept; if YES, reject."

Can an oracle for A_{TM} actually exist?

Definition

A language A is **Turing decidable** relative to B if there exists an oracle machine M^B which decides A. If this is the case we say that A is Turing reducible to B and write $A \leq_T B$.

Definition

A language A is **Turing decidable** relative to B if there exists an oracle machine M^B which decides A. If this is the case we say that A is Turing reducible to B and write $A \leq_T B$.

• For all machines A: $A \leq_T A$

Definition

A language A is **Turing decidable** relative to B if there exists an oracle machine M^B which decides A. If this is the case we say that A is Turing reducible to B and write $A \leq_T B$.

- For all machines A: $A \leq_T A$
- For all machines A and their compliments \overline{A} : $\overline{A} \leq_T A$

Definition

A language A is **Turing decidable** relative to B if there exists an oracle machine M^B which decides A. If this is the case we say that A is Turing reducible to B and write $A \leq_T B$.

- For all machines A: $A \leq_T A$
- For all machines A and their compliments \overline{A} : $\overline{A} \leq_T A$
- $E_{TM} \leq_T A_{TM}$

Recall, A is mapping reducible to B, $A \leq_m B$, if there is a computable function f such that

$$w \in A \Leftrightarrow f(w) \in B.$$

That is, if we can change questions about A into questions about B in some computable way. It is "clear" that $A \leq_m B \Rightarrow A \leq_T B$.

Recall, A is mapping reducible to B, $A \leq_m B$, if there is a computable function f such that

$$w \in A \Leftrightarrow f(w) \in B.$$

That is, if we can change questions about A into questions about B in some computable way. It is "clear" that $A \leq_m B \Rightarrow A \leq_T B$.

 $M^B = "On input w:$

- **Query the oracle for B to determine if** $f(w) \in B$.
- If the oracle answers YES, accept; if NO, reject."

Theorem

There exists A and B such that $A \leq_T B$ and $A \not\leq_m B$.

Image: A matrix

Theorem

There exists A and B such that $A \leq_T B$ and $A \not\leq_m B$.

• $A = \overline{A_{TM}}$

Theorem

There exists A and B such that $A \leq_T B$ and $A \not\leq_m B$.

- $A = \overline{A_{TM}}$
- $B = A_{TM}$

æ

Theorem

There exists A and B such that $A \leq_T B$ and $A \not\leq_m B$.

- $A = \overline{A_{TM}}$
- $B = A_{TM}$
- $\overline{A_{TM}} \leq_T A_{TM}$

Theorem

There exists A and B such that $A \leq_T B$ and $A \not\leq_m B$.

- $A = \overline{A_{TM}}$
- $B = A_{TM}$
- $\overline{A_{TM}} \leq_T A_{TM}$
- If $\overline{A_{TM}} \leq_m A_{TM}$, then $\overline{A_{TM}}$ would be recognizable, a contradiction.

Theorem

If $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$

Theorem

If $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$

• Suppose M_1^B decides if $w \in A$ using an oracle for B.

3 🕨 🖌 3 🕨

Image: Image:

Theorem

If $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$

- Suppose M_1^B decides if $w \in A$ using an oracle for B.
- Suppose M_2^C decides if $w \in B$ using an oracle for C.

Theorem

If $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$

- Suppose M_1^B decides if $w \in A$ using an oracle for B.
- Suppose M_2^C decides if $w \in B$ using an oracle for C.
- Define M_3^C by replacing the oracle for B in M_1^B with M_2^C .

Theorem

If $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$

- Suppose M_1^B decides if $w \in A$ using an oracle for B.
- Suppose M_2^C decides if $w \in B$ using an oracle for C.
- Define M_3^C by replacing the oracle for B in M_1^B with M_2^C .

 M_1^B = "On input w: Query the oracle for B to determine if $w \in B$ and so also in A." M_2^C = "On input w: Query the oracle for C to determine if $w \in C$ and so also in B."

Theorem

If $A \leq_T B$ and $B \leq_T C$, then $A \leq_T C$

- Suppose M_1^B decides if $w \in A$ using an oracle for B.
- Suppose M_2^C decides if $w \in B$ using an oracle for C.
- Define M_3^C by replacing the oracle for B in M_1^B with M_2^C .

 $M_2^C =$ "On input w: Query the oracle for C to determine if $w \in C$ and so also in B." $M_3^C =$ "On input w: Query M_2^C to determine if $w \in B$ and so also in A."

Decidability

Theorem

If $A \leq_T B$ and B is decidable, then A is decidable.

Decidability

Theorem

If $A \leq_T B$ and B is decidable, then A is decidable.

Given an oracle TM M^B which decides A, replace the oracle for B with the decider for B.

∃ ▶ ∢ ∃ ▶

< □ ▶

Table of Contents

Comments of Information

• A = 101010101010101010101010101010

• B = 11010101010101010000110010

Comments of Information

• A = 101010101010101010101010101010

- B = 11010101010101010000110010
- A is "clearly" compressible where as B is not
 - M = "On input w and $n \in \mathbb{N}$: repeat w n times."
 - A = M("10", 14)

Comments of Information

• *A* = 101010101010101010101010101010

- B = 11010101010101010000110010
- A is "clearly" compressible where as B is not
 - M = "On input w and $n \in \mathbb{N}$: repeat w n times."
 - A = M("10", 14)
- $\langle M, "01", 14 \rangle$

 $|\langle M, \text{``10''}, 14 \rangle| = \underbrace{10110110}_{|\langle M \rangle|} \underbrace{11101010001 \cdots 11101010}_{\langle M \rangle} \underbrace{10}_{\text{``10''}} \underbrace{110}_{14}$

Information and Minimal Descriptions

Definition

The **minimal description** of a binary string x, written d(x), is the shortest string $\langle M, w \rangle$ where the TM M prints x on input w. The **descriptive complexity** of x, K(x), is K(x) = |d(x)|.

Upper Bound for x and xx

Theorem

For any binary string x

 $\exists c_0 \forall x : K(x) \leq |x| + c_0$

and

$\exists c_1 \forall x : K(xx) \leq K(x) + c_1$

æ

E ► < E ►

.

Image: A matrix

C. F. Rocca Jr. (WCSU)

Upper Bound for x and xx

Theorem

For any binary string x

 $\exists c_0 \forall x : K(x) \leq |x| + c_0$

and

$\exists c_1 \forall x : K(xx) \leq K(x) + c_1$

c₀ is the length of a Turing machine that outputs its input x (the identity function).

3 1 4 3 1

< □ ▶

Upper Bound for x and xx

Theorem

```
For any binary string x
```

 $\exists c_0 \forall x : K(x) \leq |x| + c_0$

and

$\exists c_1 \forall x : K(xx) \leq K(x) + c_1$

- c₀ is the length of a Turing machine that outputs its input x (the identity function).
- c₁ is the length of a machine that runs a Turing machine N on input w and prints the result twice; we run this on d(x), the minimal description of x.

Suppose x = 1010 and y = 1101; we could represent $\langle xy \rangle$ by

• 11001100_01_1101

we could represent $\langle xy \rangle$ by

• 11001100.01.1101

Suppose x = 1010 and y = 1101; Then $\exists c \forall x, y$ so that K(xy) = |d(xy)| is bounded by

• 2K(x) + K(y) + c

we could represent $\langle xy \rangle$ by

- 11001100.01.1101
- 110000.01.1010.1101

Suppose x = 1010 and y = 1101; Then $\exists c \forall x, y$ so that K(xy) = |d(xy)| is bounded by

•
$$2K(x) + K(y) + c$$

we could represent $\langle xy \rangle$ by

- 11001100.01.1101
- 110000.01.1010.1101

Suppose x = 1010 and y = 1101; Then $\exists c \forall x, y$ so that K(xy) = |d(xy)| is bounded by

•
$$2K(x) + K(y) + c$$

• $2\log_2(K(x)) + K(x) + K(y) + c$

(日) (同) (三) (三)

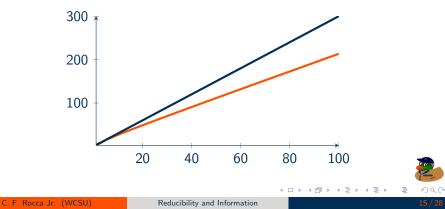
we could represent $\langle xy \rangle$ by

- 11001100.01.1101
- 110000.01.1010.1101

Suppose x = 1010 and y = 1101; Then $\exists c \forall x, y$ so that K(xy) = |d(xy)| is bounded by

•
$$2K(x) + K(y) + c$$

• $2\log_2(K(x)) + K(x) + K(y) + c$



Theorem

For any descriptive language p (programming language or language language), a fixed constant exists that depends only on p such that

 $\forall x: K(x) \leq K_p(x) + c,$

where $K_p(x) = |d_p(x)|$ is the descriptive complexity of a program in language p which prints x.

Theorem

For any descriptive language p (programming language or language language), a fixed constant exists that depends only on p such that

 $\forall x: K(x) \leq K_p(x) + c,$

where $K_p(x) = |d_p(x)|$ is the descriptive complexity of a program in language p which prints x.

• Let $K_p(x) = |d_p(x)|$ as above.

· • @ • • = • • = •

Theorem

For any descriptive language p (programming language or language language), a fixed constant exists that depends only on p such that

 $\forall x: K(x) \leq K_p(x) + c,$

where $K_p(x) = |d_p(x)|$ is the descriptive complexity of a program in language p which prints x.

- Let $K_p(x) = |d_p(x)|$ as above.
- Let *M* be an interpreter for *p* with $|\langle M \rangle| = c$.

< ロト < 同ト < 三ト < 三ト

Theorem

For any descriptive language p (programming language or language language), a fixed constant exists that depends only on p such that

 $\forall x: K(x) \leq K_p(x) + c,$

where $K_p(x) = |d_p(x)|$ is the descriptive complexity of a program in language p which prints x.

- Let $K_p(x) = |d_p(x)|$ as above.
- Let *M* be an interpreter for *p* with $|\langle M \rangle| = c$.
- Then, $\langle M \rangle d_p(x)$ prints x and

$$K(x) \leq K_p(x) + |\langle M \rangle| = K_p(x) + c$$

イロト イヨト イヨト

Table of Contents

Definition

Given a string x and constant c we say that x is c-compressible if

 $K(x) \leq |x| - c.$

If x is not c-compressible, we say that x is **incompressible by** c. If x is incompressible by 1, we say that x is **incompressible**.

∃ ▶ ∢ ∃ ▶

Definition

Given a string x and constant c we say that x is c-compressible if

 $K(x) \leq |x| - c.$

If x is not c-compressible, we say that x is **incompressible by** c. If x is incompressible by 1, we say that x is **incompressible**.

• *A* = 101010101010101010101010101010

3 1 4 3 1

Definition

Given a string x and constant c we say that x is c-compressible if

 $K(x) \leq |x| - c.$

If x is not c-compressible, we say that x is **incompressible by** c. If x is incompressible by 1, we say that x is **incompressible**.

- *A* = 101010101010101010101010101010
- B = 11010101010101010000110010

Definition

Given a string x and constant c we say that x is c-compressible if

 $K(x) \leq |x| - c.$

If x is not c-compressible, we say that x is **incompressible by** c. If x is incompressible by 1, we say that x is **incompressible**.

- *A* = 101010101010101010101010101010
- B = 1101010101010101010000110010
- *xy* = 11001100_01_1101

Definition

Given a string x and constant c we say that x is c-compressible if

 $K(x) \leq |x| - c.$

If x is not c-compressible, we say that x is **incompressible by** c. If x is incompressible by 1, we say that x is **incompressible**.

- *A* = 101010101010101010101010101010
- B = 11010101010101010000110010
- *xy* = 11001100_01_1101
- *xy* = 110000_01_1010_1101

Theorem

There exists at least $2^n - (2^{n-c+1} - 1)$ strings of length n which are incompressible by c.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

There exists at least $2^n - (2^{n-c+1} - 1)$ strings of length n which are incompressible by c.

• 2^n strings of length n

A B < A B <</p>

Theorem

There exists at least $2^n - (2^{n-c+1} - 1)$ strings of length n which are incompressible by c.

- 2^n strings of length n
- $\sum_{i=0}^{n-c} 2^i = 1 + 2 + 4 + \dots + 2^{n-c} = 2^{n-c+1} 1$

э

Theorem

There exists at least $2^n - (2^{n-c+1} - 1)$ strings of length n which are incompressible by c.

- 2ⁿ strings of length n
- $\sum_{i=0}^{n-c} 2^i = 1 + 2 + 4 + \dots + 2^{n-c} = 2^{n-c+1} 1$
- # of "c-shorter" descriptions < # of length *n* descriptions

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

There exists at least $2^n - (2^{n-c+1} - 1)$ strings of length n which are incompressible by c.

- 2ⁿ strings of length n
- $\sum_{i=0}^{n-c} 2^i = 1 + 2 + 4 + \dots + 2^{n-c} = 2^{n-c+1} 1$
- # of "c-shorter" descriptions < # of length *n* descriptions
- \therefore there exists strings incompressible by c

・ロト ・回ト ・ヨト ・ヨト

Theorem

There exists at least $2^n - (2^{n-c+1} - 1)$ strings of length n which are incompressible by c.

- 2ⁿ strings of length n
- $\sum_{i=0}^{n-c} 2^i = 1 + 2 + 4 + \dots + 2^{n-c} = 2^{n-c+1} 1$
- # of "c-shorter" descriptions < # of length *n* descriptions
- \therefore there exists strings incompressible by c
- Specifically, $2^n (2^{n-c+1} 1)$

・ロト ・回ト ・ヨト ・ヨト

Incompressible Strings

Corollary

There exists incompressible strings.

C. F. Rocca Jr. (WCSU)

Image: A matrix

E ► < E ►

.

Incompressible Strings

Corollary

There exists incompressible strings.

• let c = 1 and apply the theorem

E ► < E ►

.

Image: A matrix

C. F. Rocca Jr. (WCSU)

Incompressible Strings

Corollary

There exists incompressible strings.

- let c = 1 and apply the theorem
- ... there exists incompressible strings

▶ ∢ ∃ ▶

< <p>I I

Computable Properties and Compressibility

Definition

A **property** of a string x is a binary function f, i.e. x either has the property or it does not. Given $F_n = \{x | f(x) = FALSE \text{ and } |x| \le n\}$, a property holds for **almost all** strings if

$$\frac{|F_n|}{|AII \ Strings \ with \ |x| \le n|} \longrightarrow 0$$

as *n* goes to infinity.

▶ ∢ ∃ ▶

Computable Properties and Compressibility

Theorem

Given a computable property f that holds for almost all strings, and b > 0, then the property f is FALSE for only finitely many strings that are incompressible by b.

▶ ∢ ∃ ▶

• $F_n = \{x | f(x) = FALSE \text{ and } |x| \leq n\}$

- $F_n = \{x | f(x) = FALSE \text{ and } |x| \leq n\}$
- $F_{\infty} = \{x | f(x) = FALSE\}, F_{\infty}$ is enumerable

- $F_n = \{x | f(x) = FALSE \text{ and } |x| \leq n\}$
- $F_{\infty} = \{x | f(x) = FALSE\}, F_{\infty}$ is enumerable
- Let M be a machine that finds the i^{th} string s in F_{∞}

- $F_n = \{x | f(x) = FALSE \text{ and } |x| \le n\}$
- $F_{\infty} = \{x | f(x) = FALSE\}, F_{\infty}$ is enumerable
- Let M be a machine that finds the i^{th} string s in F_∞
- For each $x \in F_{\infty}$, let i_x be its position in F_{∞}

- $F_n = \{x | f(x) = FALSE \text{ and } |x| \leq n\}$
- $F_{\infty} = \{x | f(x) = FALSE\}, F_{\infty}$ is enumerable
- Let M be a machine that finds the i^{th} string s in F_{∞}
- For each $x \in F_{\infty}$, let i_x be its position in F_{∞}
- Thus $\langle M, i_x \rangle$ returns x and $|d(x)| = K(x) \le |i_x| + c$

- $F_n = \{x | f(x) = FALSE \text{ and } |x| \leq n\}$
- $F_{\infty} = \{x | f(x) = FALSE\}, F_{\infty}$ is enumerable
- Let M be a machine that finds the i^{th} string s in F_{∞}
- For each $x \in F_{\infty}$, let i_x be its position in F_{∞}
- Thus $\langle M, i_x \rangle$ returns x and $|d(x)| = K(x) \le |i_x| + c$
- Choose *n* so that

$$\frac{|F_n|}{|All Strings with |x| \le n|} \le \frac{1}{2^{b+c+1}}$$

• Choose *n* so that

$$\frac{|F_n|}{|All \ Strings \ with \ |x| \le n|} \le \frac{1}{2^{b+c+1}}$$

• Choose *n* so that

$$\frac{|F_n|}{|All Strings with |x| \le n|} \le \frac{1}{2^{b+c+1}}$$

• There are $2^{n+1} - 1$ strings of length *n*, so

$$i_x \le \frac{2^{n+1}-1}{2^{b+c+1}} < \frac{2^{n+1}}{2^{b+c+1}} = 2^{n-b-c}$$

< □ > < □ > < □ > < □ > < □ > < □ >

• Choose *n* so that

$$\frac{|F_n|}{|All Strings with |x| \le n|} \le \frac{1}{2^{b+c+1}}$$

• There are $2^{n+1} - 1$ strings of length *n*, so

$$i_{x} \leq \frac{2^{n+1}-1}{2^{b+c+1}} < \frac{2^{n+1}}{2^{b+c+1}} = 2^{n-b-c}$$

• Then for all x such that $|x| \ge n$ and f(x) = FALSE

$$|d(x)| = K(x) \le |i_x| + c \le (n - b - c) + c = n - b$$

< ロト < 同ト < 三ト < 三ト

• Choose *n* so that

$$\frac{|F_n|}{|All Strings with |x| \le n|} \le \frac{1}{2^{b+c+1}}$$

• There are $2^{n+1} - 1$ strings of length *n*, so

$$i_{x} \leq \frac{2^{n+1}-1}{2^{b+c+1}} < \frac{2^{n+1}}{2^{b+c+1}} = 2^{n-b-c}$$

• Then for all x such that $|x| \ge n$ and f(x) = FALSE

$$|d(x)| = K(x) \le |i_x| + c \le (n - b - c) + c = n - b$$

 ∴ If x is incompressible by b, then its length is less than n, so there are only finitely many such x.

Theorem

There exists b > 0, for all strings x, such that the minimal description d(x) of x is incompressible by b.

< □ ▶

Theorem

There exists b > 0, for all strings x, such that the minimal description d(x) of x is incompressible by b.

Define a machine M:
 M = "On input (R, y):

Theorem

There exists b > 0, for all strings x, such that the minimal description d(x) of x is incompressible by b.

- Define a machine M:
 M = "On input (R, y):
 - **Q** Run *R* on *y* and **reject** if the output is not of the form (S, z).

Theorem

There exists b > 0, for all strings x, such that the minimal description d(x) of x is incompressible by b.

- Define a machine M:
 M = "On input (R, y):
 - **1** Run *R* on *y* and **reject** if the output is not of the form (S, z).
 - Q Run S on z and halt with its output on the tape."

Theorem

There exists b > 0, for all strings x, such that the minimal description d(x) of x is incompressible by b.

- Define a machine M:
 M = "On input (R, y):
 - Q Run R on y and reject if the output is not of the form (S, z).
 Q Run S on z and halt with its output on the tape."
- Let $b = |\langle M \rangle| + 1$ so that $|\langle M \rangle| = b 1$

Theorem

There exists b > 0, for all strings x, such that the minimal description d(x) of x is incompressible by b.

Define a machine M:
 M = "On input (R, y):

Q Run R on y and reject if the output is not of the form (S, z).
Q Run S on z and halt with its output on the tape."

- Let $b = |\langle M \rangle| + 1$ so that $|\langle M \rangle| = b 1$
- If d(x) is *b*-compressible:

 $egin{aligned} &|\langle M, d(d(x)
angle| \leq |\langle M
angle| + |d(d(x))| \ &\leq (b-1) + |d(x)| - b = |d(x)| - 1 \end{aligned}$

(日) (同) (三) (三)

Theorem

There exists b > 0, for all strings x, such that the minimal description d(x) of x is incompressible by b.

Define a machine M:
 M = "On input (R, y):

Q Run R on y and reject if the output is not of the form (S, z).
Q Run S on z and halt with its output on the tape."

- Let $b = |\langle M \rangle| + 1$ so that $|\langle M \rangle| = b 1$
- If d(x) is *b*-compressible:

 $egin{aligned} |\langle \mathcal{M}, d(d(x)
angle| &\leq |\langle \mathcal{M}
angle |+ |d(d(x))| \ &\leq (b-1) + |d(x)| - b = |d(x)| - 1 \end{aligned}$

• But d(x) is minimal, so this is a contradiction.

Table of Contents

< E ► < E ►

Image: A matrix

C. F. Rocca Jr. (WCSU)

Next Class

• Have a Good Summer

C. F. Rocca Jr. (WCSU)

Reducibility and Information

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

Image: A matrix and a matrix

æ

▶ ∢ ∃ ▶