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Sets, Relations, and Functions

Sets

Sets:
A = {a, e, i , o, u, y} and
B = {b, c, d , f , g , h, . . . , z}

Union:
A ∪ B = {a, b, c, d , e, . . . , z}
Intersection:
A ∩ B = {y}
Complement:
Ac = (B \ {y}) ∪ {0, 1, . . . , 9}
Universal Set:
U = A ∪ B ∪ {0, 1, . . . , 9}
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Sets, Relations, and Functions

New Sets from Old

A = {a, b, c} and B = {0, 1, 2}

Cartesian Product:

A × B = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2), (c, 0), (c, 1), (c, 2)}

Power Set:

P(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}
|P(A)| = 2|A|
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Sets, Relations, and Functions

Cardinality of a Power Set: |P(S)| = 2|S|

A = {0, 1} and B = {0, 1, 2}

P(A) = {∅, {0}, {1}, {0, 1}}

P(B) =?

P(B) = P(A) ∪

 ⋃
s∈P(A)

{s ∪ {2}}


= {∅, {0}, {1}, {0, 1}} ∪ {{2}, {0, 2}, {1, 2}, {0, 1, 2}}
= {∅, {0}, {1}, {0, 1}, {2}, {0, 2}, {1, 2}, {0, 1, 2}}
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Sets, Relations, and Functions

Relations

Definition (Relation)
A relation between two sets is a subset of their Cartesian product.

Given:

A × B = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2), (c, 0), (c, 1), (c, 2)}

A sample relation might be:

R = {(a, 0), (a, 1), (a, 2), (b, 1), (b, 2), (c, 2)}
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Equivalence Relation

Definition (Equivalence Relation)
A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.
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Sets, Relations, and Functions

Function

Definition (Function)
A function is a relation between two sets, the first called the domain and
the second the co-domain, such that for all x in the domain there exists a
unique y in the co-domain such that (x , y) is in the relation.

Given:

A × B = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2), (c, 0), (c, 1), (c, 2)}

The relation:

R = {(a, 0), (a, 1), (a, 2), (b, 1), (b, 2), (c, 2)}

is not a function
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Definition (Function)
A function is a relation between two sets, the first called the domain and
the second the co-domain, such that for all x in the domain there exists a
unique y in the co-domain such that (x , y) is in the relation.

Given:

A × B = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2), (c, 0), (c, 1), (c, 2)}
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Theorems and Proofs

Direct Proof

Theorem (De Morgan’s Law)
Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(A ∪ B)c = Ac ∩ Bc .

Proof: Let A and B be sets and x ∈ (A ∪ B)c , thus x 6∈ A ∪ B. This means that
x 6∈ A and x 6∈ B, so that x ∈ Ac and x ∈ Bc . By definition then, x ∈ Ac ∩ Bc

and (A ∪ B)c ⊆ Ac ∩ Bc .
Now suppose x ∈ Ac ∩ Bc or equivalently x ∈ Ac and x ∈ Bc . This tells us that
x 6∈ A and x 6∈ B and thus x 6∈ A ∪ B, i.e. x ∈ (A ∪ B)c . Therefore,
Ac ∩ Bc ⊆ (A ∪ B)c and

(A ∪ B)c = Ac ∩ Bc

as desired.
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Theorems and Proofs

By Cases

Theorem
Given any integer n, either n2 or n2 − 1 is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some
unique k. Then

n2 = 4k2

and n2 is divisible by four.
(Case2) Now, if n is an odd integer then we write n = 2k + 1 for some unique k.
Thus,

n2 − 1 = 4k2 + 4k + 1 − 1 = 4(k2 + k)

and n2 − 1 is divisible by four.
Therefore, for any integer n we have shown that either n2 or n2 − 1 is divisible by
four.
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Theorems and Proofs

Contrapositive

Theorem
If n2 is even, then n is even.

Proof: Suppose that n is odd and is written n = 2k + 1 for some unique k.
Then we can write

n2 = 4k2 = 4k + 1 = 2(2k2 + 2k) + 1

which is odd. Therefore, if n is odd, then n2 is odd and so if n2 is even,
then n is even.
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Theorems and Proofs

Contradiction

Theorem
No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n = 2k and
n = 2l + 1 for some unique k and l . Then we can write 2k = 2l + 1 and
1 = 2(k − l). If k − l = 0, then 1 = 0 and if k − l 6= 0, then 2 divides 1.
In either case we derive a contradiction and therefore no integer is both
even and odd.
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Theorems and Proofs

Induction

Theorem
Any tree with n vertices has n − 1 edges.

C. F. Rocca Jr. (WCSU) Review 22 / 25



Theorems and Proofs

Induction

Theorem
Any tree with n vertices has n − 1 edges.

(Base Case) When there is only one
vertex there are no edges since trees do
not contain loops and there is not a
second vertex to connect to.
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Theorems and Proofs

Induction

Theorem
Any tree with n vertices has n − 1 edges.

(Induction Step) Assume that the
theorem is true for some k ≥ 2 and
consider a tree with k + 1 ≥ 3 vertices.

Since there are at least two vertices the
tree must contain at least one leaf.
Removing the leaf removes one vertex
and one edge; we now have a subtree
with k vertices and, by induction, k − 1
edges. Thus the original tree has k + 1
vertices and k edges.
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