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Sets

@ Sets:
A={a, e i,o,u,y} and
B={b,c,d,f,g,h,...,z}
@ Union:
AUB=/{a,b,c,d,e,...,z}
@ Intersection:
ANB={y}

Complement:

Ac = (B\{y})u{o,1,...,9}
Universal Set:

Y =AuBU{0,1,...,9}
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et Relations and Functions |
New Sets from Old

e A={a,b,c} and B=1{0,1,2}

@ Cartesian Product:
Ax B ={(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}
@ Power Set:

P(A) ={0,{a},{b},{c},{a b}, {a,c},{b,c},{a,b,c}}
|2 (A)] =24
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o 7(B) ={0,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}
o |2(B)| =?

(2B)|=12A)+| J {su{2h}

seP(A)

=[2A)+ > Hsu{2}}
se Z(A)

= [Z(A) +[2(A)

~2.|2(A)




S ses Relations and Funciions |
Cardinality of a Power Set: |22(S)| = 2I°!

0 A= {0,1} and B = {0,1,2}
‘@(A) = {@, {0}7 {1}7 {Oa 1}}

o 7(B) ={0,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}}
o |Z(B)|=2-|2(A) =224 =2A+1 = 2lBl
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Relations

A relation between two sets is a subset of their Cartesian product. \

Given:

Ax B={(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}

A sample relation might be:

R ={(a,0),(a,1),(a,2), (b, 1), (b,2),(c,2)}
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Given:
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Relations

A relation between two sets is a subset of their Cartesian product. \

Given:

Ax A={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,b)(c,c)}

A sample relation might be:

O == {(37 b)7 (av C)a (b’ C)}
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Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.
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Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

0= {(37 b)? (37 C)? (b7 C)}

 CF Rocadr (WGSU) Review



L
Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

0= {(37 b)7 (av C)a (b’ C)}

Since a does not relate to its self (a o a) this is not reflexive.

Review




Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

0= {(37 b)? (a? C)v (bv C)}

Since a relates to b (a ~ b) but b does not relate to a (b ¢ a) this is not
symmetric.

C CF Rocadr (WGSU) Review



L
Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

0= {(37 b)7 (a’ C)v (bv C)}

Since a~ b and b ~ ¢ and a ~ c this is transitive.
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A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

C= {(av 3)7 (37 b)? (b7 a)? (b7 b)? (C7 C)}
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Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

C ={(a,a),(a,b),(b,a), (b, b),(c,c)}

Since a~ a, b~ b, and ¢ ~ c this is reflexive.

Review
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Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

C= {(av a)v (a’ b)’ (b’ a)? (b7 b)’ (C7 C)}

Since a ~ b and b ~ a this is symmetric.
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L
Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

C= {(av a)v (av b)v (bv a)? (b7 b)? (Ca C)}
transitive.

Sincea~ b, b~ aand a~ a(also, b~ a,a~ b, and b ~ b) this is

Review
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Equivalence Relation

A relation between a set and its self is an equivalence relation if and only
if it is reflexive, symmetric, and transitive.

Given the relation on A:

C= {(aa a)’ (aa b)a (ba a)? (ba b)a (Cv C)}

This relation is am equivalence relation.

Review
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the second the co-domain, such that for all x in the domain there exists a

unique y in the co-domain such that (x, y) is in the relation.
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~ sets Relations, and Funcrions |
Function

A function is a relation between two sets, the first called the domain and
the second the co-domain, such that for all x in the domain there exists a
unique y in the co-domain such that (x, y) is in the relation.

Given:

Ax B={(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}

The relation:

R ={(a,0),(a,1),(a,2), (b, 1),(b,2),(c,2)}

is not a function
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~ sets Relations, and Funcrions |
Function

A function is a relation between two sets, the first called the domain and
the second the co-domain, such that for all x in the domain there exists a
unique y in the co-domain such that (x, y) is in the relation.

Given:

Ax B=1{(a0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}

But, the relation:
S ={(a,1),(b,2),(c,0)}

is a function
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Graphs
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@ Vertex Set:
vV ={AB,C,D}

@ Edge Set:
E= {617 €2, €3, €4, €5, 66}

@ Edge Set:

E = {(A, A), (A, B),(A, D),(B,B),(B,D),(C,D)}




Graphs

@ Vertex Set:
vV ={AB,C,D}

€1 €4
O € O @ Edge Set:
@ e E:{el7e27e3ae47e5aeﬁ}

€5 @ Edge Set:
- Q E={(A A),(A B),(A D), (B, B),(B, D), (C, D)}
@ Graph:
G=(V,E)
= ({A, B, C, D},

{(A,A), (A, B),(A, D), (B, B),(B,D),(C. D)})
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. Theoremsand Proofs |
Direct Proof

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AUB) = A°n B“.
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Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AUB) = A°n B“.

Proof: Let A and B be sets and x € (AU B)“, thus x ¢ AU B.
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. Theoremsand Proofs |
Direct Proof

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AUB) = A°n B“.

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means that
x ¢ A and x € B, so that x € A® and x € B€.
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. Theoremsand Proofs |
Direct Proof

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AUB) = A°n B“.

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means that
x ¢ A and x € B, so that x € A° and x € B€. By definition then, x € AN B¢
and (AU B)° C A°n BC,
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Direct Proof

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AUB) = A°n B“.

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means that
x ¢ A and x € B, so that x € A° and x € B€. By definition then, x € AN B¢
and (AU B)° C A°n B-.

Now suppose x € A° N B€ or equivalently x € A and x € B€.
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. Theoremsand Proofs |
Direct Proof

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AUB) = A°n B“.

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means that
x ¢ A and x € B, so that x € A° and x € B€. By definition then, x € AN B¢
and (AU B)° C A°n B-.

Now suppose x € A° N B€ or equivalently x € A° and x € B¢. This tells us that
x g Aand x ¢ B and thus x ¢ AUB, i.e. x € (AU B)".
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. Theoremsand Proofs |
Direct Proof

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AUB) = A°n B“.

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means that
x ¢ A and x € B, so that x € A° and x € B€. By definition then, x € AN B¢
and (AU B)° C A°n B-.
Now suppose x € A° N B€ or equivalently x € A° and x € B¢. This tells us that
x g Aand x € B and thus x ¢ AUB, i.e. x € (AU B)". Therefore,
A°NB°C (AUB) and

(AUB) = AN B

as desired.
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By Cases

Given any integer n, either n®> or n?> — 1 is divisible by four.

 CF Rocadr (WGSU) Review



o Treoremsand Proos
By Cases

Given any integer n, either n®> or n?> — 1 is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some
unique k. Then
n? = 4k?

and n? is divisible by four.
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o Treoremsand Proos
By Cases

Given any integer n, either n®> or n?> — 1 is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some
unique k. Then
n? = 4k?

and n? is divisible by four.
(Case2) Now, if n is an odd integer then we write n = 2k + 1 for some unique k.
Thus,

n? —1=4k?>+4k+1—1=4(k*+k)

and n? — 1 is divisible by four.
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o Treoremsand Proos
By Cases

Given any integer n, either n®> or n?> — 1 is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some
unique k. Then
n? = 4k?

and n? is divisible by four.
(Case2) Now, if n is an odd integer then we write n = 2k + 1 for some unique k.
Thus,

n? —1=4k?>+4k+1—1=4(k*+k)
and n? — 1 is divisible by four.
Therefore, for any integer n we have shown that either n? or n> — 1 is divisible by

four.
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Contrapositive

If n? is even, then n is even. \
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Contrapositive

If n? is even, then n is even. \

Proof: Suppose that nis odd and is written n = 2k + 1 for some unique k.
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Contrapositive

If n?

is even, then n is even.

Then we can write

Proof: Suppose that nis odd and is written n = 2k + 1 for some unique k.
which is odd.

n? = 4k> = 4k +1 =2(2k* + 2k) + 1

Review




Contrapositive

If n? is even, then n is even.

Proof: Suppose that nis odd and is written n = 2k + 1 for some unique k.
Then we can write

n? = 4k> = 4k +1 =2(2k* + 2k) + 1

which is odd. Therefore, if n is odd, then n? is odd and so if n? is even,
then n is even.

 CF Rocadr (WGSU) Review



Contradiction

No integer is both even and odd. \
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Contradiction

No integer is both even and odd. \
Proof: Suppose that n is both even and odd so that n = 2k and
n=2/+ 1 for some unique k and /.

Review




Contradiction

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n = 2k and
n =2/ +1 for some unique k and /. Then we can write 2k =2/ + 1 and
1=2(k—1).
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Contradiction

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n = 2k and
n =2/ +1 for some unique k and /. Then we can write 2k =2/ + 1 and
1=2(k—1). Ifk—1=0,then1=0andif k—/+#0, then 2 divides 1.
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Contradiction

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n = 2k and

n =2/ +1 for some unique k and /. Then we can write 2k =2/ + 1 and
1=2(k—1). Ifk—1=0,then1=0andif k—/+#0, then 2 divides 1.
In either case we derive a contradiction and therefore no integer is both
even and odd.

 CF Rocadr (WGSU) Review
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Any tree with n vertices has n — 1 edges. \
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o Theoremsand Proofs [
Induction

Any tree with n vertices has n — 1 edges.

(Base Case) When there is only one

vertex there are no edges since trees do
o not contain loops and there is not a
second vertex to connect to.

Review




Induction

Any tree with n vertices has n — 1 edges. \

(Induction Step) Assume that the
theorem is true for some k > 2 and
/ \ consider a tree with k + 1 > 3 vertices.
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Induction

Any tree with n vertices has n — 1 edges

N
/\ /
//\\
/\

(Induction Step) Assume that the
theorem is true for some k > 2 and
consider a tree with k + 1 > 3 vertices.
Since there are at least two vertices the
tree must contain at least one leaf.

Review




Induction

Any tree with n vertices has n — 1 edges.

(Induction Step) Assume that the
theorem is true for some k > 2 and

R = ) N consider a tree with k 4+ 1 > 3 vertices.
Rt / \\ Since there are at least two vertices the
',’ @ ¢\\\ tree must contain at least one leaf.
! / \ / " Removing the leaf removes one vertex
! Y and one edge; we now have a subtree
0 o o L4 ) with k vertices and, by induction, kK — 1
/ / \ \ . edges.
. o o %
VAN
l\ O O - e
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Induction

Any tree with n vertices has n — 1 edges. \

(Induction Step) Assume that the
theorem is true for some kK > 2 and
consider a tree with k + 1 > 3 vertices.

/ \ Since there are at least two vertices the
tree must contain at least one leaf.
Removing the leaf removes one vertex
/ \ / and one edge; we now have a subtree
with k vertices and, by induction, kK — 1

/ / \ \ edges. Thus the original tree has k + 1
vertices and k edges.

 CF Rocadr (WGSU) Review




o
Table of Contents

@ Next Class

 CF Rocadr (WGSU) Review



o nexces
Next Class

@ Deterministic and Non-Deterministic Finite State Automata
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