Asymmetric Ciphers

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

C. F. Rocca Jr.

Asymmetric Ciphers

1/24

Table of Contents

1 Symmetric vs. Asymmetric Ciphers

- Pactoring, Discrete Logarithms, and Roots
- 3 Diffie-Hellman Key Exchange
- 4 ElGamal Encryption System
- 5 RSA Encryption System
- 6 Concluding Remarks

Symmetric Cipher

Definition (Symmetric Cipher)

In a *symmetric cipher* the sender Alice and recipient Bob have equal knowledge of a key allowing them both to encipher and or decipher a message. Examples of these include affine ciphers, Vigenere's Cipher, Vernam's Cipher, Hill's Cipher, DES, and AES.

イロト イヨト イヨト イヨト

Asymmetric

Definition (Asymmetric Cipher)

In an *asymmetric cipher* the sender Alice makes use of a key, possibly public, to a trap-door function and the recipient Bob then uses a secret key known only to him to decipher. So their knowledge is not equal. Examples of this include RSA, Diffie-Hellman Key Exchange, ElGamal, Elliptic Curve, and Lattice Based encryption.

< ロ > < 同 > < 回 > < 回 >

Table of Contents

Pactoring, Discrete Logarithms, and Roots

- Diffie-Hellman Key Exchange
- 4 ElGamal Encryption System
- 5 RSA Encryption System
- 6 Concluding Remarks

Factors

Theorem (Fundamental Theorem of Arithmetic)

Given an integer $n \in \mathbb{N}$, either n is prime or n may be written as a product of primes

$$n = p_1 p_2 p_3 \cdots p_k$$

which is unique up to order.

イロト イヨト イヨト イヨ

Primitive Roots

Definition (Primitive Roots)

Given a natural number n, we say that $a \in \mathbb{N}$ is a primitive root of n if the powers

$$a^{1}, a^{2}, a^{3}, \ldots, a^{\phi(n)}$$

is a reduced residue system modulo n. We will see later that a = 3 is a primitive root for n = 31, i.e. modulo 31

$$\{3, 3^2, \dots, 3^{30}\} = \{1, 2, 3, 4, \dots, 30\}.$$

Image: A matrix

★ ∃ ►

Primitive Roots

Definition (Primitive Roots)

Given a natural number n, we say that $a \in \mathbb{N}$ is a primitive root of n if the powers

$$a^1, a^2, a^3, \ldots, a^{\phi(n)}$$

is a reduced residue system modulo n. We will see later that a = 3 is a primitive root for n = 31, i.e. modulo 31

$$\{3, 3^2, \dots, 3^{30}\} = \{1, 2, 3, 4, \dots, 30\}.$$

Theorem

A positive integer n > 1, has a primitive root if and only if $n = 2, 4, p^t$, or $2p^t$ where p is an odd prime and t is a positive integer.

前班

< ロ > < 同 > < 回 > < 回 > < 回 >

Logs

Definition (Discrete Logarithm Problem)

Let *a* be a primitive root in \mathbb{F}_p for a prime *p* and let *h* be a non-zero element of \mathbb{F}_p . The *Discrete Logarithm Problem (DLP)* is the problem of finding *x* such that

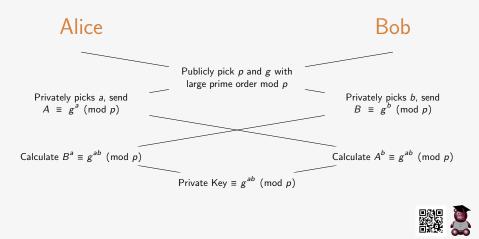
$$a^{\times} \equiv h \pmod{p}.$$

The number x is called the discrete logarithm of h to the base a and is denoted $\log_a(h)$.

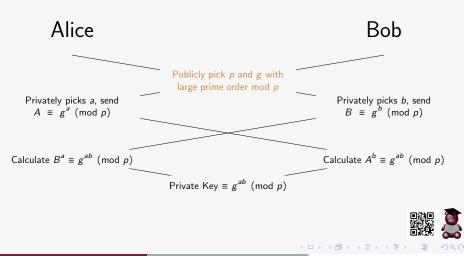
イロト イポト イヨト イヨ

Table of Contents

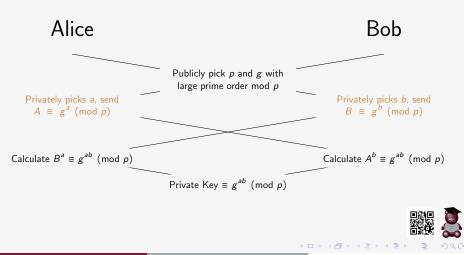
- Symmetric vs. Asymmetric Ciphers
- 2 Factoring, Discrete Logarithms, and Roots
- Oiffie-Hellman Key Exchange
 - 4 ElGamal Encryption System
- 5 RSA Encryption System
- 6 Concluding Remarks



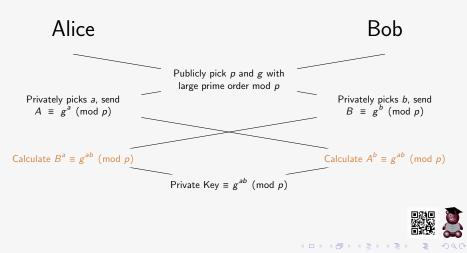
A D F A B F A B F A B

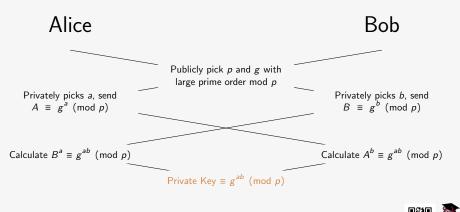


10/24



10/24





イロト イポト イヨト イヨ

10 / 24


```
i: 1 2 3 4 5 6 7 8 9 10

a^{i} \pmod{p}: 3 9 27 19 26

i: 11 12 13 14 15 16 17 18 19 20

a^{i} \pmod{p}:

i: 21 22 23 24 25 26 27 28 29 30

a^{i} \pmod{p}:
```


Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's see that 3 is a primitive root modulo p = 31.

Let's let $g = 3^6 \pmod{31} = 16$ which has order 5 (pretend 5 is big)

• Note that a, b < 5, the order of 16 modulo 31

C. F. Rocca Jr.

12 / 24

- Note that a, b < 5, the order of 16 modulo 31
- Alice picks *a* = 3 so that

$$A \equiv g^a \equiv 4 \pmod{31}$$

- Note that a, b < 5, the order of 16 modulo 31
- Alice picks *a* = 3 so that

$$A \equiv g^a \equiv 4 \pmod{31}$$

• Bob picks b = 4 so that

 $B \equiv g^b \equiv 2 \pmod{31}$

- Note that a, b < 5, the order of 16 modulo 31
- Alice picks *a* = 3 so that

$$A \equiv g^a \equiv 4 \pmod{31}$$

• Bob picks *b* = 4 so that

$$B \equiv g^b \equiv 2 \pmod{31}$$

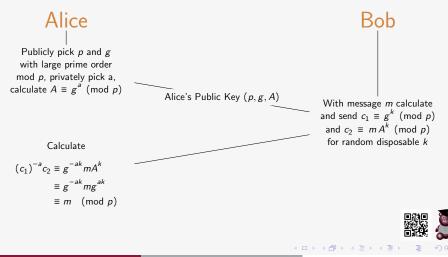
• The private key is then

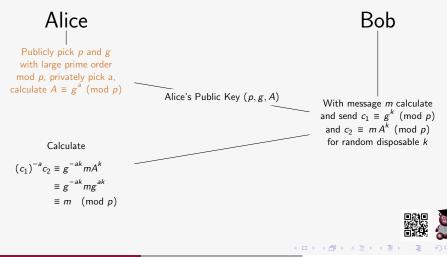
$$A^b \equiv B^a \equiv g^{ab} = 8 \pmod{31}$$

12/24

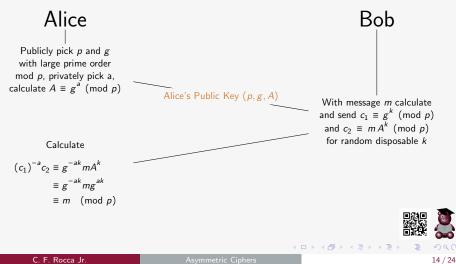
Table of Contents

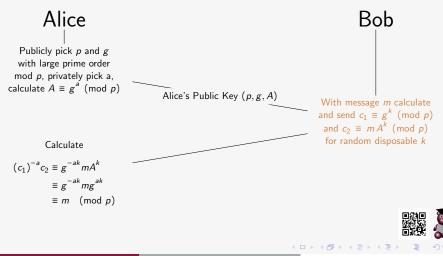
- 1 Symmetric vs. Asymmetric Ciphers
- 2 Factoring, Discrete Logarithms, and Roots
- 3 Diffie-Hellman Key Exchange
- 4 ElGamal Encryption System
- 5 RSA Encryption System
- 6 Concluding Remarks



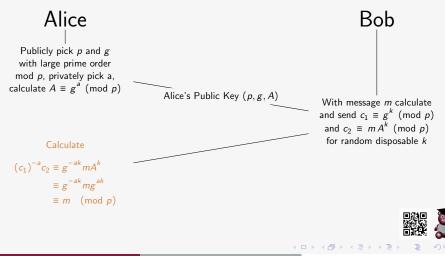


14 / 24





14 / 24



Encryption Example

• Use p = 31, g = 16 (which has order 5), and a = 3

Encryption Example

- Use p = 31, g = 16 (which has order 5), and a = 3
- Public Key (p, g, A) = (31, 16, 4), with $A \equiv g^a \pmod{p}$

Encryption Example

- Use p = 31, g = 16 (which has order 5), and a = 3
- Public Key (p, g, A) = (31, 16, 4), with $A \equiv g^a \pmod{p}$
- Bob "randomly" chooses k = 4 to encipher "T"=19,

$$c_1 = g^k \equiv 2 \pmod{31} \text{ and}$$
$$c_2 = \text{``T''} A^k \equiv 19 \cdot 4^4 \equiv 28 \pmod{31}$$

Decryption Example

•
$$c_1^{-a} \equiv 2^{-3} \equiv (2^3)^{-1} \equiv 4 \pmod{31}$$

C. F. Rocca Jr.

16 / 24

Decryption Example

•
$$c_1^{-a} \equiv 2^{-3} \equiv (2^3)^{-1} \equiv 4 \pmod{31}$$

• $c_1^{-a} c_2 \equiv 4 \cdot 28 \equiv 19 \pmod{31}$

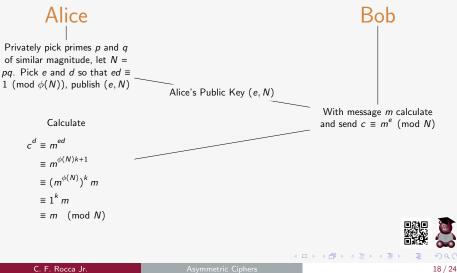
Decryption Example

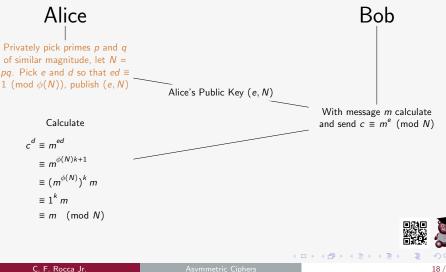
•
$$c_1^{-a} \equiv 2^{-3} \equiv (2^3)^{-1} \equiv 4 \pmod{31}$$

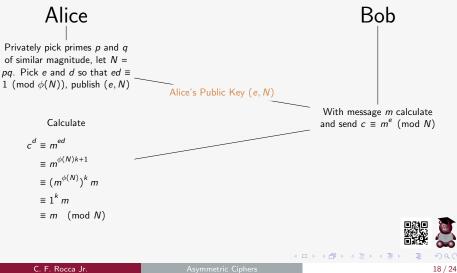
• $c_1^{-a} c_2 \equiv 4 \cdot 28 \equiv 19 \pmod{31}$

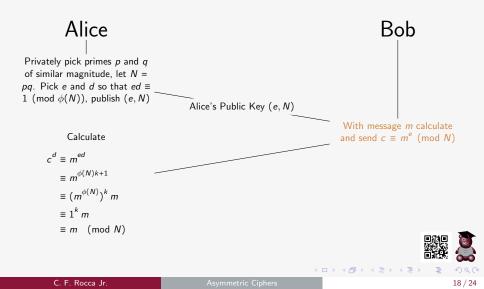
Table of Contents

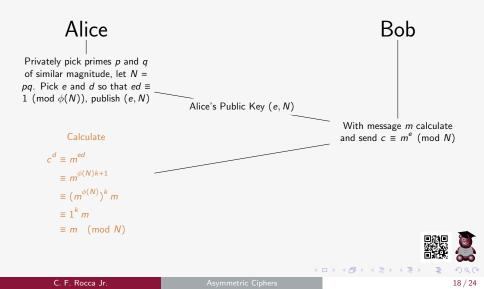
- Symmetric vs. Asymmetric Ciphers
- 2 Factoring, Discrete Logarithms, and Roots
- 3 Diffie-Hellman Key Exchange
- 4 ElGamal Encryption System
- SA Encryption System
 - 6 Concluding Remarks

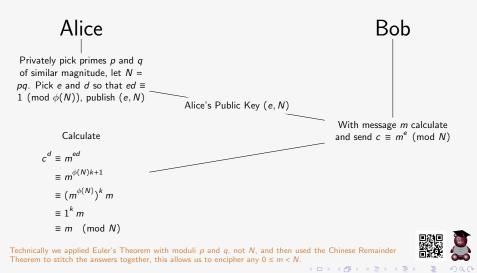












Asymmetric Ciphers

18/24

Key Generation

• Choose p = 31 and q = 37

C. F. Rocca Jr.

19 / 24

- Choose p = 31 and q = 37
- $N = p \cdot q = 1147$ and $\phi(1147) = \phi(31)\phi(37) = 30 \cdot 36 = 1080$

• Choose
$$p = 31$$
 and $q = 37$
• $N = p \cdot q = 1147$ and $\phi(1147) = \phi(31)\phi(37) = 30 \cdot 36 = 1080$
• $1080 = 2^3 \cdot 3^3 \cdot 5$, let $e = 101$

• Choose
$$p = 31$$
 and $q = 37$
• $N = p \cdot q = 1147$ and $\phi(1147) = \phi(31)\phi(37) = 30 \cdot 36 = 1080$
• $1080 = 2^3 \cdot 3^3 \cdot 5$, let $e = 101$
• $d = 101^{-1} \pmod{1080} = 941$ 941 $\cdot 101 = 88 \cdot 1080 + 1$

- Choose p = 31 and q = 37
 N = p ⋅ q = 1147 and φ(1147) = φ(31)φ(37) = 30 ⋅ 36 = 1080
 1080 = 2³ ⋅ 3³ ⋅ 5, let e = 101
 d = 101⁻¹ (mod 1080) = 941, 941 ⋅ 101 = 88 ⋅ 1080 + 1
- Publish (101,1147)

Encryption Example

• Message "T"=19

C. F. Rocca Jr.

Encryption Example

Message "T" =19
 c ≡ 19¹⁰¹ (mod 1147) = 165

Encryption Example

- Message "T"=19
- $c \equiv 19^{101} \pmod{1147} = 165$
- Send 165

• Cipher Message 165

C. F. Rocca Jr.

Cipher Message 165
 m ≡ 165⁹⁴¹ (mod 31) = 19

- Cipher Message 165
 m ≡ 165⁹⁴¹ (mod 31) = 19
- $m \equiv 165^{941} \pmod{37} = 19$

- Cipher Message 165
- $m \equiv 165^{941} \pmod{31} = 19$
- $m \equiv 165^{941} \pmod{37} = 19$
- Using the Chinese Remainder Theorem we then get

$$m \equiv 165^{941} \pmod{1147} = 19$$

- Cipher Message 165
- $m \equiv 165^{941} \pmod{31} = 19$
- $m \equiv 165^{941} \pmod{37} = 19$
- Using the Chinese Remainder Theorem we then get

$$m \equiv 165^{941} \pmod{1147} = 19$$

• The CRT is used because it is not necessary that gcd(m, N) = 1 only that m < N.

< ロ > < 同 > < 三 > < 三

- Cipher Message 165
- $m \equiv 165^{941} \pmod{31} = 19$
- $m \equiv 165^{941} \pmod{37} = 19$
- Using the Chinese Remainder Theorem we then get

$$m \equiv 165^{941} \pmod{1147} = 19$$

- The CRT is used because it is not necessary that gcd(m, N) = 1 only that m < N.
- 19="T"

ヘロト 人間 ト 人 回 ト 人 回

• Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N
- Enciphering *m* gives $c \equiv m^e \pmod{N} = 868$

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N
- Enciphering *m* gives $c \equiv m^e \pmod{N} = 868$
- Next decipher with respect to p and q

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N
- Enciphering *m* gives $c \equiv m^e \pmod{N} = 868$
- Next decipher with respect to p and q
 - $m_1 \equiv c^d \pmod{p} = 0$

< ロ > < 四 > < 回 > < 回 > < 回 >

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N
- Enciphering *m* gives $c \equiv m^e \pmod{N} = 868$
- Next decipher with respect to p and q

•
$$m_1 \equiv c^d \pmod{p} = 0$$

• $m_2 \equiv c^d \pmod{q} = 19$ which is *m* modulo

イロト イヨト イヨト イヨト

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N
- Enciphering *m* gives $c \equiv m^e \pmod{N} = 868$
- Next decipher with respect to p and q

•
$$m_1 \equiv c^d \pmod{p} = 0$$

- $m_2 \equiv c^d \pmod{q} = 19$ which is *m* modulo *q*
- Stitching those together with the Chinese Remainder Theorem we get:

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N
- Enciphering *m* gives $c \equiv m^e \pmod{N} = 868$
- Next decipher with respect to p and q

•
$$m_1 \equiv c^d \pmod{p} = 0$$

• $m_2 \equiv c^d \pmod{q} = 19$ which is *m* modulo *q*

Stitching those together with the Chinese Remainder Theorem we get:

• $m \equiv m_1 \cdot q \cdot q' + m_2 \cdot p \cdot p' \pmod{N} = 93 \checkmark$

イロト 不得下 イヨト イヨト

- Start with the same keys: p = 31, q = 37, N = 1147, $\phi(N) = 1080$, e = 101, and d = 941
- The "message" m = 93 is not relatively prime to N, gcd(m, N) = p, technically we can't apply Euler's Theorem with N
- Enciphering *m* gives $c \equiv m^e \pmod{N} = 868$
- Next decipher with respect to p and q

Stitching those together with the Chinese Remainder Theorem we get:

q

< ロ > < 同 > < 回 > < 回 >

•
$$m \equiv m_1 \cdot q \cdot q' + m_2 \cdot p \cdot p' \pmod{N} = 93 \checkmark$$

• where $q' \equiv q^{-1} \pmod{p} = 26$ and $p' \equiv p^{-1} \pmod{q} = 6$

Table of Contents

- Symmetric vs. Asymmetric Ciphers
- 2) Factoring, Discrete Logarithms, and Roots
- 3 Diffie-Hellman Key Exchange
- 4 ElGamal Encryption System
- 5 RSA Encryption System
- 6 Concluding Remarks

Asymmetric Ciphers

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

C. F. Rocca Jr.