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Symmetric Cipher

Definition (Symmetric Cipher)

In a symmetric cipher the sender Alice and recipient Bob have equal
knowledge of a key allowing them both to encipher and or decipher a
message. Examples of these include affine ciphers, Vigenere’s Cipher,
Vernam’s Cipher, Hill’s Cipher, DES, and AES.
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Asymmetric

Definition (Asymmetric Cipher)

In an asymmetric cipher the sender Alice makes use of a key, possibly
public, to a trap-door function and the recipient Bob then uses a secret
key known only to him to decipher. So their knowledge is not equal.
Examples of this include RSA, Diffie-Hellman Key Exchange, ElGamal,
Elliptic Curve, and Lattice Based encryption.
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Factors

Theorem (Fundamental Theorem of Arithmetic)

Given an integer n ∈ N, either n is prime or n may be written as a product
of primes

n = p1p2p3⋯pk

which is unique up to order.
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Primitive Roots

Definition (Primitive Roots)

Given a natural number n, we say that a ∈ N is a primitive root of n if the
powers

a
1
, a

2
, a

3
, . . . , a

φ(n)

is a reduced residue system modulo n. We will see later that a = 3 is a
primitive root for n = 31, i.e. modulo 31

{3, 3
2
, . . . , 3

30} = {1, 2, 3, 4, . . . , 30}.

Theorem

A positive integer n > 1, has a primitive root if and only if
n = 2, 4, p

t
, or 2p

t
where p is an odd prime and t is a positive integer.
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Logs

Definition (Discrete Logarithm Problem)

Let a be a primitive root in Fp for a prime p and let h be a non-zero
element of Fp. The Discrete Logarithm Problem (DLP) is the problem of
finding x such that

a
x
≡ h (mod p).

The number x is called the discrete logarithm of h to the base a and is
denoted loga(h).
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Diffie-Hellman Key Exchange

Alice Bob

Publicly pick p and g with
large prime order mod p

Privately picks a, send
A ≡ g

a (mod p)
Privately picks b, send
B ≡ g

b (mod p)

Calculate B
a
≡ g

ab (mod p) Calculate A
b
≡ g

ab (mod p)

Private Key ≡ g
ab (mod p)
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Picking g

Let’s see that 3 is a primitive root modulo p = 31.

a
i (mod p):

a
i (mod p):

a
i (mod p):

i :

i :

i :

1

3

2

9

3

27

4

19

5

26

6

16

7

17

8

20

9

29

10

25

11

13

12

8

13

24

14

10

15

30

16

28

17

22

18

4

19

12

20

5

21

15

22

14

23

11

24

2

25

6

26

18

27

23

28

7

29

21

30

1

Let’s let g = 3
6 (mod 31) = 16 which has order 5 (pretend 5 is big)
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Diffie-Hellman Key Exchange

Now the a, the b, and the private key

Note that a, b < 5, the order of 16 modulo 31

Alice picks a = 3 so that

A ≡ g
a
≡ 4 (mod 31)

Bob picks b = 4 so that

B ≡ g
b
≡ 2 (mod 31)

The private key is then

A
b
≡ B

a
≡ g

ab
= 8 (mod 31)
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ElGamal Crypto System

Alice Bob
Publicly pick p and g
with large prime order

mod p, privately pick a,
calculate A ≡ g

a (mod p)
Alice’s Public Key (p, g ,A)

With message m calculate
and send c1 ≡ g

k (mod p)
and c2 ≡ mA

k (mod p)
for random disposable kCalculate

(c1)−ac2 ≡ g
−ak

mA
k

≡ g
−ak

mg
ak

≡ m (mod p)
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ElGamal Encryption System

Encryption Example

Use p = 31, g = 16 (which has order 5), and a = 3

Public Key (p, g ,A) = (31, 16, 4), with A ≡ g
a (mod p)

Bob “randomly” chooses k = 4 to encipher “T”=19,

c1 = g
k
≡ 2 (mod 31) and

c2 = “T”A
k
≡ 19 ⋅ 4

4
≡ 28 (mod 31)
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Decryption Example

c
−a
1 ≡ 2

−3
≡ (2

3)−1
≡ 4 (mod 31)

c
−a
1 c2 ≡ 4 ⋅ 28 ≡ 19 (mod 31)

19=“T”
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RSA Crypto System

Alice Bob
Privately pick primes p and q
of similar magnitude, let N =

pq. Pick e and d so that ed ≡
1 (mod φ(N)), publish (e,N)

Alice’s Public Key (e,N)

With message m calculate
and send c ≡ m

e (mod N)Calculate

c
d
≡ m

ed

≡ m
φ(N)k+1

≡ (mφ(N))k m
≡ 1

k
m

≡ m (mod N)

Technically we applied Euler’s Theorem with moduli p and q, not N, and then used the Chinese Remainder
Theorem to stitch the answers together, this allows us to encipher any 0 ≤ m < N.

C. F. Rocca Jr. Asymmetric Ciphers 18 / 24



Potsdam

Alumni

RSA Encryption System

RSA Crypto System

Alice Bob
Privately pick primes p and q
of similar magnitude, let N =

pq. Pick e and d so that ed ≡
1 (mod φ(N)), publish (e,N)

Alice’s Public Key (e,N)

With message m calculate
and send c ≡ m

e (mod N)Calculate

c
d
≡ m

ed

≡ m
φ(N)k+1

≡ (mφ(N))k m
≡ 1

k
m

≡ m (mod N)

Technically we applied Euler’s Theorem with moduli p and q, not N, and then used the Chinese Remainder
Theorem to stitch the answers together, this allows us to encipher any 0 ≤ m < N.

C. F. Rocca Jr. Asymmetric Ciphers 18 / 24



Potsdam

Alumni

RSA Encryption System

RSA Crypto System

Alice Bob
Privately pick primes p and q
of similar magnitude, let N =

pq. Pick e and d so that ed ≡
1 (mod φ(N)), publish (e,N)

Alice’s Public Key (e,N)

With message m calculate
and send c ≡ m

e (mod N)Calculate

c
d
≡ m

ed

≡ m
φ(N)k+1

≡ (mφ(N))k m
≡ 1

k
m

≡ m (mod N)

Technically we applied Euler’s Theorem with moduli p and q, not N, and then used the Chinese Remainder
Theorem to stitch the answers together, this allows us to encipher any 0 ≤ m < N.

C. F. Rocca Jr. Asymmetric Ciphers 18 / 24



Potsdam

Alumni

RSA Encryption System

RSA Crypto System

Alice Bob
Privately pick primes p and q
of similar magnitude, let N =

pq. Pick e and d so that ed ≡
1 (mod φ(N)), publish (e,N)

Alice’s Public Key (e,N)

With message m calculate
and send c ≡ m

e (mod N)Calculate

c
d
≡ m

ed

≡ m
φ(N)k+1

≡ (mφ(N))k m
≡ 1

k
m

≡ m (mod N)

Technically we applied Euler’s Theorem with moduli p and q, not N, and then used the Chinese Remainder
Theorem to stitch the answers together, this allows us to encipher any 0 ≤ m < N.

C. F. Rocca Jr. Asymmetric Ciphers 18 / 24



Potsdam

Alumni

RSA Encryption System

RSA Crypto System

Alice Bob
Privately pick primes p and q
of similar magnitude, let N =

pq. Pick e and d so that ed ≡
1 (mod φ(N)), publish (e,N)

Alice’s Public Key (e,N)

With message m calculate
and send c ≡ m

e (mod N)Calculate

c
d
≡ m

ed

≡ m
φ(N)k+1

≡ (mφ(N))k m
≡ 1

k
m

≡ m (mod N)

Technically we applied Euler’s Theorem with moduli p and q, not N, and then used the Chinese Remainder
Theorem to stitch the answers together, this allows us to encipher any 0 ≤ m < N.

C. F. Rocca Jr. Asymmetric Ciphers 18 / 24



Potsdam

Alumni

RSA Encryption System

RSA Crypto System

Alice Bob
Privately pick primes p and q
of similar magnitude, let N =

pq. Pick e and d so that ed ≡
1 (mod φ(N)), publish (e,N)

Alice’s Public Key (e,N)

With message m calculate
and send c ≡ m

e (mod N)Calculate

c
d
≡ m

ed

≡ m
φ(N)k+1

≡ (mφ(N))k m
≡ 1

k
m

≡ m (mod N)

Technically we applied Euler’s Theorem with moduli p and q, not N, and then used the Chinese Remainder
Theorem to stitch the answers together, this allows us to encipher any 0 ≤ m < N.
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RSA Encryption System

Key Generation

Choose p = 31 and q = 37

N = p ⋅ q = 1147 and φ(1147) = φ(31)φ(37) = 30 ⋅ 36 = 1080

1080 = 2
3 ⋅ 3

3 ⋅ 5, let e = 101

d = 101
−1 (mod 1080) = 941, 941 ⋅ 101 = 88 ⋅ 1080 + 1

Publish (101,1147)
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RSA Encryption System

Encryption Example

Message “T”=19

c ≡ 19
101 (mod 1147) = 165

Send 165

C. F. Rocca Jr. Asymmetric Ciphers 20 / 24



Potsdam

Alumni

RSA Encryption System

Encryption Example

Message “T”=19

c ≡ 19
101 (mod 1147) = 165

Send 165

C. F. Rocca Jr. Asymmetric Ciphers 20 / 24



Potsdam

Alumni

RSA Encryption System

Encryption Example

Message “T”=19

c ≡ 19
101 (mod 1147) = 165

Send 165

C. F. Rocca Jr. Asymmetric Ciphers 20 / 24



Potsdam

Alumni

RSA Encryption System

Decryption Examples

Cipher Message 165

m ≡ 165
941 (mod 31) = 19

m ≡ 165
941 (mod 37) = 19

Using the Chinese Remainder Theorem we then get

m ≡ 165
941 (mod 1147) = 19

The CRT is used because it is not necessary that gcd(m,N) = 1 only
that m < N.

19=“T”
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RSA Encryption System

Example with Non-Relatively Prime Message

Start with the same keys: p = 31, q = 37, N = 1147, φ(N) = 1080,
e = 101, and d = 941

The “message” m = 93 is not relatively prime to N, gcd(m,N) = p,
technically we can’t apply Euler’s Theorem with N

Enciphering m gives c ≡ m
e (mod N) = 868

Next decipher with respect to p and q

m1 ≡ c
d (mod p) = 0

m2 ≡ c
d (mod q) = 19 which is m modulo q

Stitching those together with the Chinese Remainder Theorem we
get:

m ≡ m1 ⋅ q ⋅ q
′ +m2 ⋅ p ⋅ p

′ (mod N) = 93 ✓
where q

′
≡ q

−1 (mod p) = 26 and p
′
≡ p

−1 (mod q) = 6
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