Sequences

Practice 3: $d_n = 1 - 1/3^n$				
• $d_0 =$ • $d_1 =$ • $d_2 =$ • $d_3 =$ • $d_4 =$ • $d_5 =$ Description:				
Practice 4: $f_n = 1 + (-1/2)^n$				
• $f_0 =$ • $f_1 =$ • $f_2 =$ • $f_3 =$ • $f_4 =$ • $f_5 =$ Description:				
Practice 5: $h_n = (-1)^n + (-1/2)^n$				
• $h_0 =$ • $h_1 =$ • $h_2 =$ • $h_3 =$ • $h_4 =$ • $h_5 =$ Description:				

Practice 6: $j_n = (-1)^n - (-1/2)^n$	
• <i>i</i> ₀ =	
• j ₀ =	
• j ₁ =	
• j ₂ =	
• j ₃ =	
• $j_4 = $	
Description:	

Theorem 1. A bounded sequence has a **convergent subsequence**. (The converse is not true.)

Note that we could also write $g_0 = 1$ and $g_n = -\sqrt{2} \cdot g_{n-1}$ for g_n , this is called a *recursive definition* for the sequence.

Practice 9: $r_0 = 3$ and $r_n = r_{n-1}/2$	
• <i>r</i> ₀ =	
• <i>r</i> ₁ =	
• r ₂ =	
• r ₃ =	
• r ₄ =	
• <i>r</i> ₅ =	
Description:	

Practice 11: $F_0 = 1$, $F_1 = 1$ and $F_n = F_{n-1} + $	F_{n-2}
• <i>F</i> ₀ =	
• <i>F</i> ₁ =	
• <i>F</i> ₂ =	
• <i>F</i> ₃ =	
• <i>F</i> ₄ =	
• <i>F</i> ₅ =	
Description:	

Practice 12: $a_0 = 1$ and $a_n = \frac{1}{3}a_{n-1}$					
Find a_5 :		Find a_{10} :			
$a_5 = \frac{1}{3}a_4$	$a_n = \frac{1}{3}a_{n-1}$	$a_{10} = \frac{1}{3}a_9$	$a_n = \frac{1}{3}a_{n-1}$		
=	$a_n = \frac{1}{3}a_{n-1}$	=	$a_n = \frac{1}{3}a_{n-1}$		
=	$a_n = \frac{1}{3}a_{n-1}$	=	$a_n = \frac{1}{3}a_{n-1}$		
=	$a_n = \frac{1}{3}a_{n-1}$	=	$a_n = \frac{1}{3}a_{n-1}$		
=	$a_n = \frac{1}{3}a_{n-1}$	=	$a_n = \frac{1}{3}a_{n-1}$		
=	$a_0 = 1$	=	<i>a</i> ₅ =		
		1			
Practice 13: $b_0 = 1$	& $b_1 = 2$ and $b_n = b_{n-1} + $	$2b_{n-2}$			
Find b_5 :					
$b_5 = 2b_4 +$	$b_n = b_{n-1} + 2b_{n-2}$				
=		$b_n = b_{n-1} + 2b_{n-2}$			
=		$b_n = b_{n-1} + 2b_{n-2}$			
=		$b_n = b_{n-1} + 2b_{n-2} \& b_1 = 2$			
=		$b_0 = 1 \& b_1 = 2$			

Sums $\mathbf{2}$

Summation/Product Notation $\mathbf{2.1}$

The 10 is the upper bound

The
$$\Sigma$$
 (sigma) means sum or add

$$\sum_{i=0}^{10} \overbrace{(i^2+1)}^{(i^2+1)} = (0^2+1) + (1^2+1) + (2^2+1) + \cdots + (10^2+1)$$
The 0 is the lower bound
The *i* is the index
The *i* is the index
Ellipses, \cdots , mean and so on

$$\sum_{i=0}^{10} \overbrace{(i^2+1)}^{(i^2+1)} = (0^2+1) + (1^2+1) + (2^2+1) + \cdots + (10^2+1)$$
Each time we iterate we add another
term by evaluating the expression for
the new *i*

The 10 is the upper bound |

The
$$\Pi$$
 (pi) means product or multiply

$$\prod_{i=0}^{10} \overbrace{(i^2+1)}^{(i^2+1)} = (0^2+1) \times (1^2+1) \times (2^2+1) \times \cdots \times (10^2+1)$$
The 0 is the lower bound
Ellipses, \cdots , mean and so on
Ellipses, $\cdots \times (10^2+1)$
Ellipses, $\cdots \times (10^2+1)$

The i is the index

another factor by evaluating the expression for the new i

=

2.3 Geometric Sums

Practice 16:
$$S_n = \sum_{i=0}^n (1/2)^i$$

 $S_n = \sum_{i=0}^n (1/2)^i = 1 + 1/2 + 1/4 + 1/8 + \dots + (1/2)^n$
 $S_n = \sum_{i=0}^n (1/2)^i =$
For $n = k$:
 $S_k = 1/1 + 1/2 + 1/4 + \dots + 1/2^{k-1} + 1/2^k$
 $(1/2) \cdot S_k = 1/2 + 1/4 + 1/8 + \dots + 1/2^k + 1/2^{k+1}$
 $(1/2) \cdot S_k - S_k =$
 $S_k =$
Practice 17: $S_n = \sum_{i=0}^n (1/4)^i$
 $S_n = \sum_{i=0}^n (1/4)^i = 1 + 1/4 + 1/16 + 1/64 + \dots + (1/4)^n$
 $S_n = \sum_{i=0}^n (1/4)^i = 1 + 1/4 + 1/16 + 1/64 + \dots + (1/4)^n$
For $n = k$:

$$S_k = 1/1 + 1/4 + 1/16 + \dots + 1/4^{k-1} + 1/4^k$$

(1/4) · S_k = 1/4 + 1/16 + 1/64 + \dots + 1/4^k + 1/4^{k+1}

 $(1/4) \cdot S_k - S_k = _$

S_k = _____

3 Using and Finding Formulas

Exposition 5: Sum Formulas

Arithmetic Sum
$$\sum_{i=1}^{n} a \cdot i + b = n \cdot b + a \frac{n(n+1)}{2}$$

Geometric Sum

$$\sum_{i=0}^{n} a \cdot r^{i} = a \left(\frac{r^{n+1} - 1}{r - 1} \right)$$

Practice 19: Using Formulas, an Arithmetic Example

Find the sum of:

$$\sum_{i=5}^{31} i = 5 + 6 + 7 + \dots + 30 + 31$$

Solution 1 (Re-Indexing):

$$\sum_{i=5}^{31} i = 5 + 6 + 7 + \dots + 30 + 31$$

= (1 + 4) + (2 + 4) + (3 + 4) + \dots + (26 + 4) + (27 + 4)
= $\sum_{j=1}^{27} (j + 4)$ let $j = i - 4$
= $27 \cdot 4 + \frac{27 \cdot 28}{2}$
= $108 + 378$
= 486

Solution 2 (Adding Zero):

$$\sum_{i=5}^{31} i = 5 + 6 + 7 + \dots + 30 + 31$$

= $(1 + 2 + 3 + 4 + 5 + 6 + 7 + \dots + 30 + 31) - (1 + 2 + 3 + 4)$
= $\left(\sum_{i=1}^{31} i\right) - \left(\sum_{i=1}^{4} i\right)$
= $\left(\frac{31 \cdot 32}{2}\right) - \left(\frac{4 \cdot 5}{2}\right)$
= $496 - 10$
= 486

Practice 20: Using Formulas, a Geometric Example Find the sum of: $\sum_{i=10}^{106} \left(\frac{3}{7}\right)^i = \left(\frac{3}{7}\right)^{10} + \left(\frac{3}{7}\right)^{11} + \dots + \left(\frac{3}{7}\right)^{106}$ Solution 1 (Re-Indexing): $\sum_{i=10}^{106} \left(\frac{3}{7}\right)^i = \left(\frac{3}{7}\right)^{10} + \left(\frac{3}{7}\right)^{11} + \dots + \left(\frac{3}{7}\right)^{106}$ = = = = Solution 2 (Adding Zero): $106 (2)^{i} (2)^{10} (2)^{11}$ 100

$$\sum_{i=10}^{5} \left(\frac{3}{7}\right) = \left(\frac{3}{7}\right) + \left(\frac{3}{7}\right) + \dots + \left(\frac{3}{7}\right)$$
$$=$$
$$=$$
$$=$$
$$=$$
$$=$$
$$=$$

Exposition 6: Iteration Algorithm		
Iteration : Given $a_0 = b$, $a_n = c \cdot a_{n-1} + d$, and an expression with a_k :	Apply Iteration to $a_0 = 2$, $a_n = a_{n-1} + 2$, starting at $a_n (k = 3)$:	
1. While $k > 0$:	starting at as $(n - 0)$.	
 (a) Replace ak with (c ⋅ ak-1 + d) (b) Collect like terms (c) Decrement k 2. When k = 0 replace a0 with b 	$a_{3} = (a_{2} + 2)$ = ((a_{1} + 2) + 2) = (a_{1} + 2 \cdot 2) = ((a_{0} + 2) + 2 \cdot 2) = (a_{0} + 3 \cdot 2) = (2 + 3 \cdot 2)	apply steps 1a & 1b apply step 1a apply step 1b apply step 1a apply step 1b apply step 2
 Simplify final expression with appropri- ate formula 	$= (2 + 3 \cdot 2)^{n}$ = 4 \cdot (2) $a_n = (n+1) \cdot (2)$	apply step 2 apply step 3-ish apply step 4
4. Generalize		

Exposition 7: Apply Iteration to $a_0 = 4$ and $a_n = 6 \cdot a_{n-1} + 4$

$$a_{4} = (6 \cdot a_{3} + 4)$$

$$= 6 \cdot (6 \cdot a_{2} + 4) + 4$$

$$= 6^{2} \cdot a_{2} + 6 \cdot 4 + 4$$

$$= 6^{2} \cdot (6 \cdot a_{1} + 4) + 6 \cdot 4 + 4$$

$$= 6^{3} \cdot a_{1} + 6^{2} \cdot 4 + 6 \cdot 4 + 4$$

$$= 6^{3} \cdot (6 \cdot a_{0} + 4) + 6^{2} \cdot 4 + 6 \cdot 4 + 4$$

$$= 6^{4} \cdot a_{0} + 6^{3} \cdot 4 + 6^{2} \cdot 4 + 6 \cdot 4 + 4$$

$$= 6^{4} \cdot 4 + 6^{3} \cdot 4 + 6^{2} \cdot 4 + 6 \cdot 4 + 4$$

$$= \sum_{i=0}^{4} 4 \cdot 6^{i} = 4 \left(\frac{6^{5} - 1}{6 - 1} \right)$$

$$a_{k} = \sum_{i=0}^{k} 4 \cdot 6^{i} = 4 \left(\frac{6^{k+1} - 1}{6 - 1} \right)$$

step 1a: $a_k = 6 \cdot a_{k-1} + 4$ step 1a: $a_k = 6 \cdot a_{k-1} + 4$ step 1b step 1a: $a_k = 6 \cdot a_{k-1} + 4$ step 1b step 1a: $a_k = 6 \cdot a_{k-1} + 4$ step 1b step 2: $a_0 = 4$ step 3 step 4

Practice 21: Iteration Technique with $b_0 = 2$ and $b_n = -2 \cdot b_{n-1} + 2$

Use iteration to show that

$$b_n = 2\left(\frac{\left(-2\right)^{n+1} - 1}{-2 - 1}\right).$$

remember to always replace b_n with $-2 \cdot b_{n-1} + 2$ if $k \neq 0$ and 2 if it does.

$$b_4 =$$

=

=

=

=

=

=

=

Exposition 8: Try Iteration with $F_1 = 1$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$

$$F_{5} = F_{4} + F_{3} \qquad F_{n} = F_{n-1} + F_{n-2}$$

$$= (F_{3} + F_{2}) + (F_{2} + F_{1}) \qquad F_{n} = F_{n-1} + F_{n-2}$$

$$= F_{3} + 2 \cdot F_{2} + F_{1}$$

$$= (F_{2} + F_{1}) + 2 \cdot (F_{1} + F_{0}) + F_{1} \qquad F_{n} = F_{n-1} + F_{n-2}$$

$$= F_{2} + 4 \cdot F_{1} + 2 \cdot F_{0}$$

$$= (F_{1} + F_{0}) + 4 \cdot F_{1} + 2 \cdot F_{0} \qquad F_{n} = F_{n-1} + F_{n-2}$$

$$= 5 \cdot F_{1} + 3 \cdot F_{0}$$

But $F_4 = 5$ and $F_3 = 3$ so this doesn't really tell us anything.

Theorem 2 (Distinct Roots Version). Given r_0 , r_1 , and $r_n = A \cdot r_{n-1} + B \cdot r_{n-2}$, if the roots of $x^2 - Ax - B = 0$, are distinct values s_0 and s_1 , then $r_n = C \cdot s_0^n + D \cdot s_1^n$ for appropriate values of C and D.

Exposition 9: Characteristic Polynomials with $F_0 = 1$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$

We have $F_n = F_{n-1} + F_{n-2}$ so that A = B = 1 and we need the roots of $x^2 - x - 1$ which are

$$x = \frac{1 \pm \sqrt{5}}{2}$$

and by theorem 2

$$F_n = C\left(\frac{1+\sqrt{5}}{2}\right)^n + D\left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Then

$$F_0 = C + D = 1$$
 and
 $F_1 = C\left(\frac{1+\sqrt{5}}{2}\right) + D\left(\frac{1-\sqrt{5}}{2}\right) = 1$

Solving for C and D we get

$$C = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)$$
 and $D = -\frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)$.

Therefore the closed formula for the Fibonacci sequence is

$$F_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^{n+1}$$

Practice 22: Characteristic Polynomials with $G_0 = 2$, $G_1 = 3$ and $G_n = 4 \cdot G_{n-1} + 5 \cdot G_{n-2}$

Using theorem 2 as before, we have $G_n = 4 \cdot G_{n-1} + 5 \cdot G_{n-2}$ so that A = 4, B = 5 and we find the roots of $x^2 - 4x - 5$ which are x = 5 and x = -1. Then

Theorem 3 (Single Root Version). Given r_0 , r_1 , and $r_n = A \cdot r_{n-1} + B \cdot r_{n-2}$, if the only root of

$$x^2 - Ax - B = 0,$$

is the value s_0 , then $r_n = C \cdot s_0^n + D \cdot n \cdot s_0^n$ for appropriate values of C and D.

Practice 23: Characteristic Polynomials with $H_0 = 5$, $H_1 = 4$ and $H_n = 4 \cdot H_{n-1} - 4 \cdot H_{n-2}$

Using theorem 3, we have $H_n = 4 \cdot H_{n-1} - 4 \cdot H_{n-2}$ so that A = 4, B = -4 and we need the roots of $x^2 - 4x + 4$ which are x = 2 and x = 2. Then