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@ Sets:

A = {aﬂ e7 i’ O’ u’.y} and

B = {b,C,d, f,g,h,...,Z}
@ Union:

AuB={a,b,c,d,e,..., z}
@ Intersection:

AnB={y}

Complement:

A= (B\{y})u{o,1,...,9}
Universal Set:

% =AuBuU{0,1,...,9}
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e A={a,b,c} and B={0,1,2}
@ Cartesian Product:

Ax B ={(a,0),(a1),(a 2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}

@ Power Set:

P(A) = {@,{a}, {b}, {c},{a, b}, {a, c}, {b, c}, {a, b,c}}
|2(A)| = 2
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Definition (Relation)

A relation between two sets is a subset of their Cartesian product.
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Sets, Relations, and Functions

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.
Given A = {a,b,c} and B = {0,1,2}:

Ax B ={(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}
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Definition (Relation)

A relation between two sets is a subset of their Cartesian product.
Given A = {a,b,c} and B = {0,1,2}:

A sample relation might be:

Ax B ={(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}

R ={(a,0),(a,1),(a,2),(b,1),(b,2),(c,2)}
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Definition (Relation)

Given:

A relation between two sets is a subset of their Cartesian product.

Ax A={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(cb)(c,c)}
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Definition (Relation)

Given:

A relation between two sets is a subset of their Cartesian product.

A sample relation might be:

Ax A={(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(cb)(c,c)}

0 ={(a,b),(a,c),(b,c)}
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Sets, Relations, and Functions

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.
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Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

O ={(a,b),(a,c), (b, c)}
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Sets, Relations, and Functions

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

0 ={(a,b),(a,c), (b, c)}

Since a does not relate to its self (a # a) this is not reflexive.
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Sets, Relations, and Functions

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

O ={(a,b),(a,c), (b, c)}

Since a relates to b (a ~ b) but b does not relate to a (b # a) this is not
symmetric.
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Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

O ={(a,b),(a,c), (b, c)}

Since a ~ b and b ~ ¢ and a ~ c this is transitive.
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Sets, Relations, and Functions

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

C={(a a),(a,b),(b,a),(b,b),(c,c)}

Since a ~ a, b ~ b, and ¢ ~ c this is reflexive.
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Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

C ={(a,a),(a b),(b,a),(b,b),(c,c)}

Since a ~ b and b ~ a this is symmetric.
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Sets, Relations, and Functions

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:
C=1{(a,a),(a,b),(b,a),(b,b),(c,c)}

Since a~ b, b~aand a~a(also, b~a,a~b, and b ~ b) this
transitive.
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Sets, Relations, and Functions

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

C={(a a),(a,b),(b,a),(b,b),(c,c)}

This relation is am equivalence relation.
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Sets, Relations, and Functions

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if
it is reflexive, symmetric, and transitive.

Given the relation on A:

C={(a a),(a,b),(b,a),(b,b),(c,c)}
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Sets, Relations, and Functions

Definition (Function)

A function is a relation between two sets, the first called the domain and
the second the co-domain, such that for all x in the domain there exists a
unique y in the co-domain such that (x,y) is in the relation.
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Sets, Relations, and Functions

Definition (Function)

A function is a relation between two sets, the first called the domain and
the second the co-domain, such that for all x in the domain there exists a
unique y in the co-domain such that (x,y) is in the relation.

Given:
Ax B =1{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}
The relation:

R ={(a,0),(a,1),(a,2),(b,1),(b,2),(c,2)}

is not a function

C. F. Rocca Jr. (WCSU) Review 9/25



Sets, Relations, and Functions

Definition (Function)

A function is a relation between two sets, the first called the domain and
the second the co-domain, such that for all x in the domain there exists a
unique y in the co-domain such that (x,y) is in the relation.

Given:

Ax B ={(a,0),(a,1),(a,2),(b,0),(b,1),(b,2),(c,0),(c,1),(c,2)}

But, the relation:
S ={(a,1),(b,2),(c,0)}

is a function
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@ Vertex Set:
vV ={AB,C, D}
@ Edge Set:

E={e;, 656656}
@ Edge Set:

E ={(A,A),(A B),(A D), (B,B),(B,D),(C,D)}
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@ Vertex Set:

vV ={AB,C,D}
@ Edge Set:

E= {ela €2, €3, €4, €5, eﬁ}
@ Edge Set:

E ={(A A),(A B),(A D), (B,B),(B,D),(C, D)}
@ Graph:

G=(V,E)

= ({A,B, C,D},

{(A,A), (A B),(A,D),(B, B),(B,D),(C,D)})
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Theorems and Proofs

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AuB) = A°n B
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Theorems and Proofs

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AuB) = A°n B
Proof: Let A and B be sets and x € (AU B)“, thus x ¢ AU B.
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Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AuB) = A°n B
Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means
x¢ Aand x ¢ B, so x € A and x € B“.
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Theorems and Proofs

Theorem (De Morgan's Law)

intersection of their complements:

Given two sets A and B, the complement of their union is equal to the

(AuB) = A°n B
x¢ Aand x ¢ B, so x € A and x € B“.
(AUB) € A°n B“.

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means

By definition then, x € A° n B and
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Theorems and Proofs

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AuB) = A°n B

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means
x ¢ Aand x ¢ B, so x € A and x € B°. By definition then, x € A“n B and
(AUB) € A°n B“.

Now suppose x € A° N B or equivalently x € A and x € B°.
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Theorems and Proofs

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AuB) = A°n B

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means

x ¢ Aand x ¢ B, so x € A and x € B°. By definition then, x € A“n B and
(AUB) € A°n B“.

Now suppose x € A° N B or equivalently x € A® and x € B®. This tells us that
x¢ Aand x ¢ Band thus x ¢ AUB, i.e. x € (AU B)“.
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Theorems and Proofs

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AuB) = A°n B

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means
x ¢ Aand x ¢ B, so x € A and x € B°. By definition then, x € A“n B and
(AUB) € A°n B“.
Now suppose x € A° N B or equivalently x € A® and x € B®. This tells us that
x¢ Aand x ¢ B and thus x ¢ AU B, i.e. x € (AU B)°. Therefore,
AN B“c (AU B) and

(AUB) = A“nB°

as desired.
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Theorems and Proofs

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the
intersection of their complements:

(AuB) = A°n B

Proof: Let A and B be sets and x € (AU B)€, thus x ¢ AU B. This means
x ¢ Aand x ¢ B, so x € A and x € B°. By definition then, x € A“n B and
(AUB) € A°n B“.
Now suppose x € A° N B or equivalently x € A® and x € B®. This tells us that
x¢ Aand x ¢ B and thus x ¢ AU B, i.e. x € (AU B)°. Therefore,
AN B“c (AU B) and

(AUB) = A“nB°

as desired. Why did this proof require two parts?
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Theorems and Proofs

Given any integer n, either n® or n® — 1 is divisible by four.
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Theorems and Proofs

Given any integer n, either n® or n® — 1 is divisible by four.
unique k. Then

n =

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some
= 447

2
and n’ is divisible by four.
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Theorems and Proofs

Given any integer n, either n® or n® — 1 is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some
unique k. Then
n° =4k

and n’ is divisible by four.
(Case2) Now, if n is an odd integer then we write n = 2k + 1 for some unique k.
Thus,

P —1=4K +4k+1-1=4(K +k)

and n® — 1 is divisible by four.
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Theorems and Proofs

Given any integer n, either n® or n® — 1 is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some
unique k. Then

n® = 4k*
and n’ is divisible by four.

(Case2) Now, if n is an odd integer then we write n = 2k + 1 for some unique k.

Thus,
P —1=4K +4k+1-1=4(K +k)

and n® — 1 is divisible by four.
Therefore, for any integer n we have shown that either n® or n* — 1 is divisible by

four.
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Theorems and Proofs

2 . .
If n° is even, then n is even.
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Theorems and Proofs

2 . .
If n° is even, then n is even.

Proof: Suppose that n is odd and is written n = 2k + 1 for some unique k.
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Theorems and Proofs

which is odd.

If n° is even, then n is even. I
Proof: Suppose that n is odd and is written n = 2k + 1 for some unique k.
Then we can write

n’ = (2k +1)° = 4k* + 4k + 1 = 2(2k” + 2k) + 1
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Theorems and Proofs

If n° is even, then n is even. I
Proof: Suppose that n is odd and is written n = 2k + 1 for some unique k.
Then we can write

n’ = (2k +1)° = 4k* + 4k + 1 = 2(2k” + 2k) + 1
then n is even.

which is odd. Therefore, if n is odd, then n? is odd and so if n’ is even,
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Theorems and Proofs

No integer is both even and odd.
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Theorems and Proofs

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n =2k and n=2/+1
for some unique k and /.
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Theorems and Proofs

No integer is both even and odd. I
Proof: Suppose that n is both even and odd so that n =2k and n=2/+1
for some unique k and /.

Then we can write 2k =2/+1and 1 =2(k—1).
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Theorems and Proofs

No integer is both even and odd. I

Proof: Suppose that n is both even and odd so that n =2k and n=2/+1

for some unique k and /. Then we can write 2k =2/+ 1 and 1 =2(k—1/).
If k—1=0,thenl1=0andif k— 1+ 0, then 2 divides 1.
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Theorems and Proofs

No integer is both even and odd. I

Proof: Suppose that n is both even and odd so that n =2k and n=2/+1
for some unique k and /. Then we can write 2k =2/+ 1 and 1 =2(k—1/).
If k—/=0,then1=0andif k—/#+#0, then 2 divides 1. In either case
we derive a contradiction and therefore no integer is both even and odd.
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Theorems and Proofs

Any tree with n vertices has n — 1 edges.
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Theorems and Proofs

Any tree with n vertices has n — 1 edges.

(Base Case) When there is only one
vertex there are no edges since trees do

not contain loops and there is not a
second vertex to connect to.
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Theorems and Proofs

Any tree with n vertices has n — 1 edges

(Induction Step) Assume that the
theorem is true for some k > 2 and
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Theorems and Proofs

Any tree with n vertices has n — 1 edges

(Induction Step) Assume that the
theorem is true for some k > 2 and
consider a tree with k + 1 = 3 vertices.
/ \ Since there are at least two vertices the
tree must contain at least one leaf
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Theorems and Proofs

Any tree with n vertices has n — 1 edges.

(Induction Step) Assume that the
———— theorem is true for some k = 2 and
consider a tree with k + 1 > 3 vertices

/ \ Since there are at least two vertices the
tree must contain at least one leaf.
Removing the leaf removes one vertex
and one edge; we now have a subtree
with k vertices and, by induction, k — 1
/ / \ \ edges.
o
‘N
1 7
1 /
\
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Theorems and Proofs

Any tree with n vertices has n — 1 edges.

(Induction Step) Assume that the
theorem is true for some k > 2 and
consider a tree with kK + 1 = 3 vertices.

/ \ Since there are at least two vertices the
tree must contain at least one leaf.

Removing the leaf removes one vertex

/ \ / and one edge; we now have a subtree

with k vertices and, by induction, k —1

/ / \ \ edges. Thus the original tree has k + 1
vertices and k edges.
[} = =
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@ Next Class
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@ Deterministic and Non-Deterministic Finite State Automata
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Next Class

Discrete Math Review

Dr. Chuck Rocca
roccacQwcsu.edu

http://sites.wcsu.edu/roccac
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