Discrete Math Review

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

Table of Contents

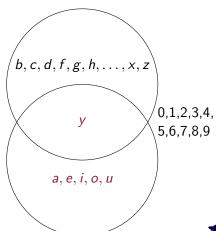
- Sets, Relations, and Functions
- ② Graph Theory
- Theorems and Proofs
- 4 Next Class

Table of Contents

- 1 Sets, Relations, and Functions
- Graph Theory
- Theorems and Proofs
- 4 Next Class

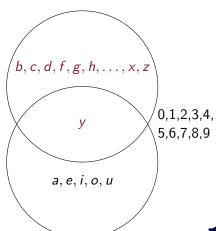
Sets:

$$A = \{a, e, i, o, u, y\}$$
 and $B = \{b, c, d, f, g, h, ..., z\}$



Sets:

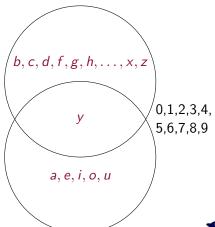
$$A = \{a, e, i, o, u, y\}$$
 and
 $B = \{b, c, d, f, g, h, ..., z\}$



Sets:

$$A = \{a, e, i, o, u, y\}$$
 and $B = \{b, c, d, f, g, h, \dots, z\}$

• Union: $A \cup B = \{a, b, c, d, e, ..., z\}$



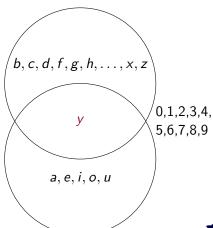
Sets:

$$A = \{a, e, i, o, u, y\}$$
 and $B = \{b, c, d, f, g, h, \dots, z\}$

• Union: $A \cup B = \{a, b, c, d, e, ..., z\}$

• Intersection:

$$A \cap B = \{y\}$$



Sets:

$$A = \{a, e, i, o, u, y\}$$
 and $B = \{b, c, d, f, g, h, \dots, z\}$

Union:

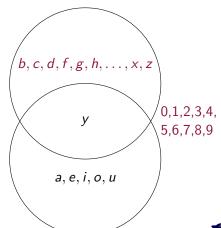
$$A \cup B = \{a, b, c, d, e, \dots, z\}$$

• Intersection:

$$A \cap B = \{y\}$$

Complement:

$$A^{c} = (B \setminus \{y\}) \cup \{0, 1, \dots, 9\}$$



Sets:

$$A = \{a, e, i, o, u, y\}$$
 and $B = \{b, c, d, f, g, h, \dots, z\}$

Union:

$$A \cup B = \{a, b, c, d, e, \dots, z\}$$

• Intersection:

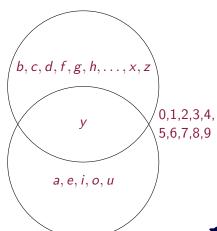
$$A \cap B = \{y\}$$

Complement:

$$A^{c} = (B \setminus \{y\}) \cup \{0, 1, \dots, 9\}$$

• Universal Set:

$$\mathscr{U} = A \cup B \cup \{0, 1, \dots, 9\}$$



New Sets from Old

• $A = \{a, b, c\}$ and $B = \{0, 1, 2\}$

5/25

New Sets from Old

- $A = \{a, b, c\}$ and $B = \{0, 1, 2\}$
- Cartesian Product:

$$A \times B = \{(a,0), (a,1), (a,2), (b,0), (b,1), (b,2), (c,0), (c,1), (c,2)\}$$

New Sets from Old

- $A = \{a, b, c\}$ and $B = \{0, 1, 2\}$
- Cartesian Product:

$$A \times B = \{(a,0), (a,1), (a,2), (b,0), (b,1), (b,2), (c,0), (c,1), (c,2)\}$$

Power Set:

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$
$$|\mathcal{P}(A)| = 2^{|A|}$$

• $A = \{0, 1\}$ and $B = \{0, 1, 2\}$

- $A = \{0, 1\}$ and $B = \{0, 1, 2\}$
- $\mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$

- $A = \{0, 1\}$ and $B = \{0, 1, 2\}$
- $\mathscr{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$
- $\mathscr{P}(B) = ?$

$$\mathcal{P}(B) = \mathcal{P}(A) \cup \left(\bigcup_{s \in \mathcal{P}(A)} \{s \cup \{2\}\} \right)$$

$$= \{\emptyset, \{0\}, \{1\}, \{0, 1\}\} \cup \{\{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

$$= \{\emptyset, \{0\}, \{1\}, \{0, 1\}, \{2\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$$

- $A = \{0, 1\}$ and $B = \{0, 1, 2\}$
- $\mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$
- $\bullet \ \mathcal{P}(B) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$

- $A = \{0, 1\}$ and $B = \{0, 1, 2\}$
- $\mathscr{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$
- $\mathcal{P}(B) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}$
- $|\mathscr{P}(B)| = ?$

$$|\mathcal{P}(B)| = |\mathcal{P}(A)| + \left| \bigcup_{s \in \mathcal{P}(A)} \{s \cup \{2\}\}\right|$$
$$= |\mathcal{P}(A)| + \sum_{s \in \mathcal{P}(A)} |\{s \cup \{2\}\}\}|$$
$$= |\mathcal{P}(A)| + |\mathcal{P}(A)|$$
$$= 2 \cdot |\mathcal{P}(A)|$$

- $A = \{0, 1\}$ and $B = \{0, 1, 2\}$
- $\mathscr{P}(A) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}$
- $\mathcal{P}(B) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, \{0, 1, 2\}\}\$
- $|\mathscr{P}(B)| = 2 \cdot |\mathscr{P}(A)| = 2 \cdot 2^{|A|} = 2^{|A|+1} = 2^{|B|}$

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.

Given
$$A = \{a, b, c\}$$
 and $B = \{0, 1, 2\}$:

$$A \times B = \{(a,0), (a,1), (a,2), (b,0), (b,1), (b,2), (c,0), (c,1), (c,2)\}$$

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.

Given
$$A = \{a, b, c\}$$
 and $B = \{0, 1, 2\}$:

$$A \times B = \{(a,0), (a,1), (a,2), (b,0), (b,1), (b,2), (c,0), (c,1), (c,2)\}$$

A sample relation might be:

$$\mathcal{R} = \{(a,0), (a,1), (a,2), (b,1), (b,2), (c,2)\}$$

7 / 25

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.

Given:

$$A \times A = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$$

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.

Given:

$$A \times A = \{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)\}$$

A sample relation might be:

$$\mathcal{O} = \{(a, b), (a, c), (b, c)\}$$

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$\mathcal{O} = \{(a, b), (a, c), (b, c)\}$$

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$\mathcal{O} = \{(a, b), (a, c), (b, c)\}$$

Since a does not relate to its self $(a \neq a)$ this is not reflexive.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$\mathcal{O} = \{(a, b), (a, c), (b, c)\}$$

Since a relates to b ($a \sim b$) but b does not relate to a ($b \not - a$) this is not symmetric.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$\mathcal{O} = \{(a, b), (a, c), (b, c)\}$$

Since $a \sim b$ and $b \sim c$ and $a \sim c$ this is transitive.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$C = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$C = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$

Since $a \sim a$, $b \sim b$, and $c \sim c$ this is reflexive.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$C = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$

Since $a \sim b$ and $b \sim a$ this is symmetric.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$C = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$

Since $a \sim b$, $b \sim a$ and $a \sim a$ (also, $b \sim a$, $a \sim b$, and $b \sim b$) this is transitive.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$C = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$

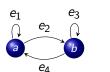
This relation is am equivalence relation.

Definition (Equivalence Relation)

A relation between a set and its self is an *equivalence relation* if and only if it is *reflexive*, *symmetric*, and *transitive*.

Given the relation on A:

$$C = \{(a, a), (a, b), (b, a), (b, b), (c, c)\}$$



Function

Definition (Function)

A function is a relation between two sets, the first called the *domain* and the second the *co-domain*, such that for all x in the domain there exists a unique y in the co-domain such that (x, y) is in the relation.

Function

Definition (Function)

A function is a relation between two sets, the first called the *domain* and the second the *co-domain*, such that for all x in the domain there exists a unique y in the co-domain such that (x, y) is in the relation.

Given:

$$A \times B = \{(a,0), (a,1), (a,2), (b,0), (b,1), (b,2), (c,0), (c,1), (c,2)\}$$

The relation:

$$\mathcal{R} = \{(a,0), (a,1), (a,2), (b,1), (b,2), (c,2)\}$$

is not a function

Function

Definition (Function)

A function is a relation between two sets, the first called the *domain* and the second the *co-domain*, such that for all x in the domain there exists a unique y in the co-domain such that (x, y) is in the relation.

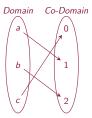
Given:

$$A \times B = \{(a,0), (a,1), (a,2), (b,0), (b,1), (b,2), (c,0), (c,1), (c,2)\}$$

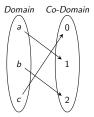
But, the relation:

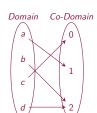
$$S = \{(a, 1), (b, 2), (c, 0)\}$$

is a function



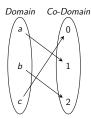
1-1 & onto



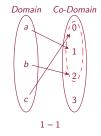


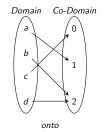
onto

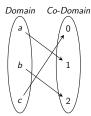
1-1 & onto

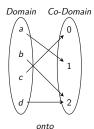


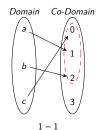
1-1 & onto

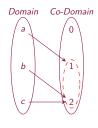


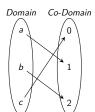


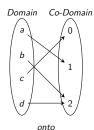


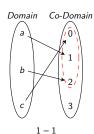


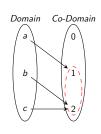












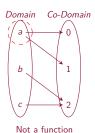
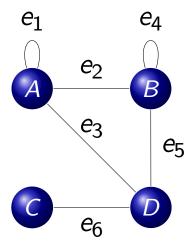
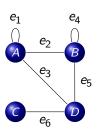


Table of Contents

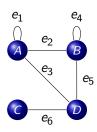
- Sets, Relations, and Functions
- 2 Graph Theory
- Theorems and Proofs
- 4 Next Class





Vertex Set:

$$V = \{A, B, C, D\}$$

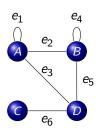


Vertex Set:

$$V = \{A, B, C, D\}$$

• Edge Set:

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$



Vertex Set:

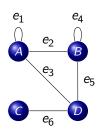
$$V = \{A, B, C, D\}$$

Edge Set:

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

• Edge Set:

$$E = \{(A,A), (A,B), (A,D), (B,B), (B,D), (C,D)\}$$



Vertex Set:

$$V = \{A, B, C, D\}$$

Edge Set:

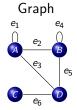
$$E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$$

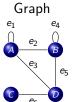
• Edge Set:

$$E = \{(A, A), (A, B), (A, D), (B, B), (B, D), (C, D)\}$$

Graph:

$$G = (V, E)$$
= ({A, B, C, D},
{(A, A), (A, B), (A, D), (B, B), (B, D), (C, D)})





Directed Graph

Graph

Bipartite Graph

Directed Graph

Graph

Bipartite Graph

Directed Graph

Complete Graph

Graph

Bipartite Graph

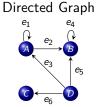
Tree

Directed Graph

Complete Graph

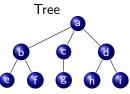
Graph

v

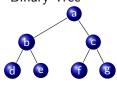


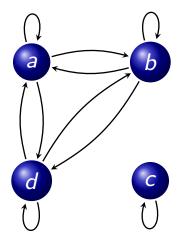
Bipartite Graph

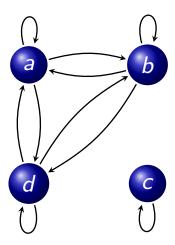
Complete Graph



Binary Tree



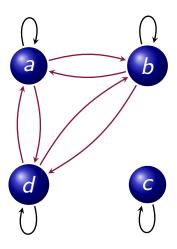




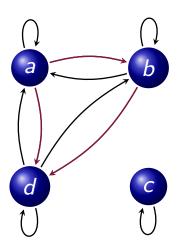


Equivalence Relation?

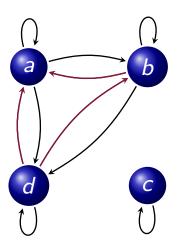
Reflexive √



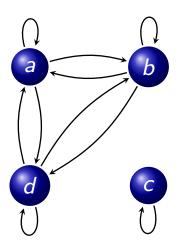
- Reflexive √
- Symmetric ✓



- Reflexive √
- Symmetric ✓
- Transitive √



- Reflexive √
- Symmetric ✓
- Transitive √



- Reflexive √
- Symmetric ✓
- Transitive √
- Equivalence Classes

$$A = \{a, b, d\} \& C = \{c\}$$

Table of Contents

- Sets, Relations, and Functions
- Graph Theory
- Theorems and Proofs
- 4 Next Class

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$(A \cup B)^c = A^c \cap B^c.$$

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$(A \cup B)^c = A^c \cap B^c.$$

Proof: Let A and B be sets and $x \in (A \cup B)^c$, thus $x \notin A \cup B$.

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$\left(A\cup B\right)^c=A^c\cap B^c.$$

Proof: Let A and B be sets and $x \in (A \cup B)^c$, thus $x \notin A \cup B$. This means $x \notin A$ and $x \notin B$, so $x \in A^c$ and $x \in B^c$.

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$(A \cup B)^c = A^c \cap B^c.$$

Proof: Let A and B be sets and $x \in (A \cup B)^c$, thus $x \notin A \cup B$. This means $x \notin A$ and $x \notin B$, so $x \in A^c$ and $x \in B^c$. By definition then, $x \in A^c \cap B^c$ and $(A \cup B)^c \subseteq A^c \cap B^c$.

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$(A \cup B)^c = A^c \cap B^c.$$

Proof: Let A and B be sets and $x \in (A \cup B)^c$, thus $x \notin A \cup B$. This means $x \notin A$ and $x \notin B$, so $x \in A^c$ and $x \in B^c$. By definition then, $x \in A^c \cap B^c$ and $(A \cup B)^c \subseteq A^c \cap B^c$.

Now suppose $x \in A^c \cap B^c$ or equivalently $x \in A^c$ and $x \in B^c$.

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$(A \cup B)^c = A^c \cap B^c.$$

Proof: Let A and B be sets and $x \in (A \cup B)^c$, thus $x \notin A \cup B$. This means $x \notin A$ and $x \notin B$, so $x \in A^c$ and $x \in B^c$. By definition then, $x \in A^c \cap B^c$ and $(A \cup B)^c \subseteq A^c \cap B^c$.

Now suppose $x \in A^c \cap B^c$ or equivalently $x \in A^c$ and $x \in B^c$. This tells us that $x \notin A$ and $x \notin B$ and thus $x \notin A \cup B$, i.e. $x \in (A \cup B)^c$.

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$(A \cup B)^c = A^c \cap B^c.$$

Proof: Let A and B be sets and $x \in (A \cup B)^c$, thus $x \notin A \cup B$. This means $x \notin A$ and $x \notin B$, so $x \in A^c$ and $x \in B^c$. By definition then, $x \in A^c \cap B^c$ and $(A \cup B)^c \subseteq A^c \cap B^c$.

Now suppose $x \in A^c \cap B^c$ or equivalently $x \in A^c$ and $x \in B^c$. This tells us that $x \notin A$ and $x \notin B$ and thus $x \notin A \cup B$, i.e. $x \in (A \cup B)^c$. Therefore, $A^c \cap B^c \subseteq (A \cup B)^c$ and

$$(A \cup B)^c = A^c \cap B^c$$

as desired.

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$(A \cup B)^c = A^c \cap B^c.$$

Proof: Let A and B be sets and $x \in (A \cup B)^c$, thus $x \notin A \cup B$. This means $x \notin A$ and $x \notin B$, so $x \in A^c$ and $x \in B^c$. By definition then, $x \in A^c \cap B^c$ and $(A \cup B)^c \subseteq A^c \cap B^c$.

Now suppose $x \in A^c \cap B^c$ or equivalently $x \in A^c$ and $x \in B^c$. This tells us that $x \notin A$ and $x \notin B$ and thus $x \notin A \cup B$, i.e. $x \in (A \cup B)^c$. Therefore, $A^c \cap B^c \subseteq (A \cup B)^c$ and

$$(A \cup B)^c = A^c \cap B^c$$

as desired. Why did this proof require two parts?

18/25

By Cases

Theorem

Given any integer n, either n^2 or $n^2 - 1$ is divisible by four.

By Cases

Theorem

Given any integer n, either n^2 or $n^2 - 1$ is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some unique k. Then

$$n^2 = 4k^2$$

and n^2 is divisible by four.

By Cases

Theorem

Given any integer n, either n^2 or $n^2 - 1$ is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some unique k. Then

$$n^2 = 4k^2$$

and n^2 is divisible by four.

(Case2) Now, if n is an odd integer then we write n = 2k + 1 for some unique k. Thus,

$$n^2 - 1 = 4k^2 + 4k + 1 - 1 = 4(k^2 + k)$$

and $n^2 - 1$ is divisible by four.

By Cases

Theorem

Given any integer n, either n^2 or $n^2 - 1$ is divisible by four.

Proof: (Case 1) Let n be an even integer so that we may write n = 2k for some unique k. Then

$$n^2 = 4k^2$$

and n^2 is divisible by four.

(Case2) Now, if n is an odd integer then we write n = 2k + 1 for some unique k. Thus,

$$n^2 - 1 = 4k^2 + 4k + 1 - 1 = 4(k^2 + k)$$

and $n^2 - 1$ is divisible by four.

Therefore, for any integer n we have shown that either n^2 or $n^2 - 1$ is divisible by four.

Theorem

If n^2 is even, then n is even.

Theorem

If n^2 is even, then n is even.

Proof: Suppose that n is odd and is written n = 2k + 1 for some unique k.

$\mathsf{Theorem}$

If n^2 is even, then n is even.

Proof: Suppose that n is odd and is written n = 2k + 1 for some unique k. Then we can write

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

which is odd.

$\mathsf{Theorem}$

If n^2 is even, then n is even.

Proof: Suppose that n is odd and is written n = 2k + 1 for some unique k. Then we can write

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

which is odd. Therefore, if n is odd, then n^2 is odd and so if n^2 is even, then n is even.

Theorem

No integer is both even and odd.

Theorem

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n = 2k and n = 2l + 1 for some unique k and l.

Theorem

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n=2k and n=2l+1 for some unique k and l. Then we can write 2k=2l+1 and 1=2(k-l).

Theorem

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n=2k and n=2l+1 for some unique k and l. Then we can write 2k=2l+1 and 1=2(k-l). If k-l=0, then 1=0 and if $k-l\neq 0$, then 2 divides 1.

Theorem

No integer is both even and odd.

Proof: Suppose that n is both even and odd so that n=2k and n=2l+1 for some unique k and l. Then we can write 2k=2l+1 and 1=2(k-l). If k-l=0, then 1=0 and if $k-l\neq 0$, then 2 divides 1. In either case we derive a contradiction and therefore no integer is both even and odd.

Theorem

Any tree with n vertices has n-1 edges.

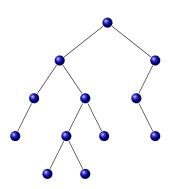
Theorem

Any tree with n vertices has n-1 edges.

(Base Case) When there is only one vertex there are no edges since trees do not contain loops and there is not a second vertex to connect to.

Theorem

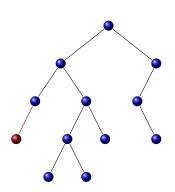
Any tree with n vertices has n-1 edges.



(Induction Step) Assume that the theorem is true for some $k \ge 2$ and consider a tree with $k + 1 \ge 3$ vertices.

Theorem

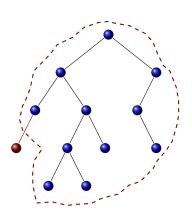
Any tree with n vertices has n-1 edges.



(Induction Step) Assume that the theorem is true for some $k \ge 2$ and consider a tree with $k+1 \ge 3$ vertices. Since there are at least two vertices the tree must contain at least one leaf.

Theorem

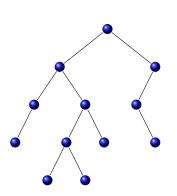
Any tree with n vertices has n-1 edges.



(Induction Step) Assume that the theorem is true for some $k \ge 2$ and consider a tree with $k+1 \ge 3$ vertices. Since there are at least two vertices the tree must contain at least one leaf. Removing the leaf removes one vertex and one edge; we now have a subtree with k vertices and, by induction, k-1 edges.

Theorem

Any tree with n vertices has n-1 edges.



(Induction Step) Assume that the theorem is true for some $k \ge 2$ and consider a tree with $k+1 \ge 3$ vertices. Since there are at least two vertices the tree must contain at least one leaf. Removing the leaf removes one vertex and one edge; we now have a subtree with k vertices and, by induction, k-1 edges. Thus the original tree has k+1 vertices and k edges.

Table of Contents

- Sets, Relations, and Functions
- Graph Theory
- Theorems and Proofs
- 4 Next Class

Next Class

• Deterministic and Non-Deterministic Finite State Automata

Discrete Math Review

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

