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Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Objectives

Objectives

After this lesson you should be able to:

1 write the equations of lines in higher dimensions,

2 write the equations for a plane in three or more dimensions,

3 comment on the distinction between, linear, line, and affine
expressions,

4 relate the equation of a plane to the equation of a line,

5 explain limits and derivatives in higher dimensions,

6 calculate partial derivatives,

7 calculate the derivative of vector valued functions, and

8 find expressions for tangent planes, vectors, and lines.

C. F. Rocca Jr. Topic 3 / 42



Different View on Lines

Table of Contents

1 Objectives

2 Different View on Lines

3 Higher Dimension Lines and planes

4 Limits in Higher Dimensions

5 Partial Derivatives

6 Tangents

C. F. Rocca Jr. Topic 4 / 42



Different View on Lines

Lines in 2D: Standard Expressions

Formats for lines in 2D:

Point-Slope Form: y = m(x − x0) + y0

Slope Intercept Form: y = mx + b

Standard Form: Ax + By = C

Parametric Form: ⟨x , y⟩ = ⟨∆x ,∆y⟩t + ⟨x0, y0⟩

C. F. Rocca Jr. Topic 5 / 42



Different View on Lines

Lines in 2D: Standard Expressions

Formats for lines in 2D:

Point-Slope Form: y = m(x − x0) + y0

Slope Intercept Form: y = mx + b

Standard Form: Ax + By = C

Parametric Form: ⟨x , y⟩ = ⟨∆x ,∆y⟩t + ⟨x0, y0⟩

C. F. Rocca Jr. Topic 5 / 42



Different View on Lines

Lines in 2D: Standard Expressions

Formats for lines in 2D:

Point-Slope Form: y = m(x − x0) + y0

Slope Intercept Form: y = mx + b

Standard Form: Ax + By = C

Parametric Form: ⟨x , y⟩ = ⟨∆x ,∆y⟩t + ⟨x0, y0⟩

C. F. Rocca Jr. Topic 5 / 42



Different View on Lines

Lines in 2D: Standard Expressions

Formats for lines in 2D:

Point-Slope Form: y = m(x − x0) + y0

Slope Intercept Form: y = mx + b

Standard Form: Ax + By = C

Parametric Form: ⟨x , y⟩ = ⟨∆x ,∆y⟩t + ⟨x0, y0⟩

C. F. Rocca Jr. Topic 5 / 42



Different View on Lines

Lines in 2D: Standard Expressions

Formats for lines in 2D:

Point-Slope Form: y = m(x − x0) + y0
Slope Intercept Form: y = mx + b

Standard Form: Ax + By = C

Parametric Form: ⟨x , y⟩ = ⟨∆x ,∆y⟩t + ⟨x0, y0⟩

∆x

∆y

(x0, y0)

m = ∆y/∆x

b = (−∆y ⋅ x0)/∆x + y0

A = −∆y , B = ∆x , and

C = −∆y ⋅ x0 +∆x ⋅ y0
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Different View on Lines

Lines in 2D: Using Orthogonality

Ax + By = C

∆x

∆y

(x0, y0)

−∆y

∆x
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Different View on Lines

Lines in 2D: Another Example

Given P = (−2, 3) and Q = (4,−2) then

Normal Vector:
−⇀
N = ⟨−∆y ,∆x⟩ = ⟨−(−2 − 3), 4 − (−2)⟩ = ⟨5, 6⟩

Vector Equation:
−⇀
N ⋅ ⟨x − 4, y + 2⟩ = 0

Standard Form: 5(x − 4) + 6(y + 2) = 0

General Form: 5x + 6y = 8

Parametric Form:

⟨x , y⟩ = ⟨∆x ,∆y⟩t + ⟨x0, y0⟩ = ⟨6,−5⟩t + ⟨4,−2⟩
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Higher Dimension Lines and planes

2D to 3D

Normal Vector:
−⇀
N = ⟨a, b⟩

Vector Equation:
−⇀
N ⋅ ⟨x − x0, y − y0⟩ = 0

Standard Form: a(x − x0) + b(y − y0) = 0

General Form: a ⋅ x + b ⋅ y = a ⋅ x0 + b ⋅ y0
Parametric Form: ⟨x , y⟩ = ⟨∆x ,∆y⟩t + ⟨x0, y0⟩
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2D to 3D

Normal Vector:
−⇀
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Higher Dimension Lines and planes

Lines vs. Planes: Visually
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Higher Dimension Lines and planes

Normal Vectors and “Planes” in Rn

Given
−⇀
N ,P ∈ Rn

and −⇀x = ⟨x1, x2, . . . , xn⟩ an n-dimensional variable, then

−⇀
N ⋅ (−⇀x − P) = 0

is the “plane” orthogonal to
−⇀
N . Which in general form is

N1 x1 + N2 x2 +⋯+ Nn xn = B

where B = N1 P1 + N2 P2 +⋯+ Nn Pn =
−⇀
N ⋅ P. This is called a

hyperplane.
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Higher Dimension Lines and planes

Parametric Definitions and “Planes“ in Rn

Given vectors −⇀v i ∈ Rn
for 1 ≤ i ≤ k and a point P ∈ Rn

then

−⇀y = t1
−⇀v 1 + t2

−⇀v 2 +⋯+ tk
−⇀v k + P

where the ti are one-dimensional variables is an affine space and can be
viewed as an image in the since that we can write

−⇀y = V
−⇀
t + P = (−⇀v 1

−⇀v 2 ⋯ −⇀v k)
⎛
⎜⎜⎜⎜⎜⎜
⎝

t1
t2
⋮
tk

⎞
⎟⎟⎟⎟⎟⎟
⎠
+ P,

a composition of a linear transformation and a translation.
Note that if k = n − 1 then this will be a plane in the same sense as the

previous slide with the normal vector
−⇀
N , the basis for V

⊥
, the orthogonal

complement to V .
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Higher Dimension Lines and planes

Linear vs. Affine Functions

Definition

A function f (x) defined on a vector space is linear provided

f (ax + by) = af (x) + bf (y)

for all vectors x , y and scalars a, b. An affine function is the composition
of a linear function and a translation.

Example

This is a linear function:

f (−⇀x ) = (1 2
3 −4

)−⇀x

While this is an affine function:

g(−⇀x ) = (1 2
3 −4

)−⇀x + ( 3
−7

)
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Higher Dimension Lines and planes

Plane Example: Parametric Form

Find the plane passing through the points P = (0, 1,−2), Q = (2, 0, 0),
and R = (1, 4, 7).

−⇀v = Q − P = ⟨2,−1, 2⟩ and −⇀w = R − P = ⟨1, 3, 9⟩
Then the plane is given by:

−⇀v ⋅ t + −⇀w ⋅ s + P =

⎛
⎜⎜
⎝

2
−1
2

⎞
⎟⎟
⎠
t +

⎛
⎜⎜
⎝

1
3
9

⎞
⎟⎟
⎠
s +

⎛
⎜⎜
⎝

0
1
−2

⎞
⎟⎟
⎠

=

⎛
⎜⎜
⎝

2 1
−1 3
9 2

⎞
⎟⎟
⎠
(t
s
) +

⎛
⎜⎜
⎝

0
1
−2

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

2 1 0
−1 3 1
9 2 −2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t
s
1

⎞
⎟⎟
⎠

In linear algebra we would say −⇀v and −⇀w form a subspace and then we
shift that subspace by adding P.
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Plane Example: Parametric Form

Find the plane passing through the points P = (0, 1,−2), Q = (2, 0, 0),
and R = (1, 4, 7).

−⇀v = Q − P = ⟨2,−1, 2⟩ and −⇀w = R − P = ⟨1, 3, 9⟩
Then the plane is given by:

−⇀v ⋅ t + −⇀w ⋅ s + P =

⎛
⎜⎜
⎝

2
−1
2

⎞
⎟⎟
⎠
t +

⎛
⎜⎜
⎝

1
3
9

⎞
⎟⎟
⎠
s +

⎛
⎜⎜
⎝

0
1
−2

⎞
⎟⎟
⎠

=

⎛
⎜⎜
⎝

2 1
−1 3
9 2

⎞
⎟⎟
⎠
(t
s
) +

⎛
⎜⎜
⎝

0
1
−2

⎞
⎟⎟
⎠
=

⎛
⎜⎜
⎝

2 1 0
−1 3 1
9 2 −2

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

t
s
1

⎞
⎟⎟
⎠
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Higher Dimension Lines and planes

Plane Example: Vector & Standard Form

Find the plane passing through the points P = (0, 1,−2), Q = (2, 0, 0),
and R = (1, 4, 7).

−⇀v = Q − P = ⟨2,−1, 2⟩ and −⇀w = R − P = ⟨1, 3, 9⟩

Find the normal vector
−⇀
N using the cross product:

»»»»»»»»»»»»

−⇀
i

−⇀
j

−⇀
k

2 −1 2
1 3 9

»»»»»»»»»»»»
= (−1(9) − 2(3))−⇀i − (2(9) − 2(1))−⇀j + (2(3) − (−1)(1))−⇀k

= ⟨−15,−16, 7⟩

The plane is given by
−⇀
N ⋅ ⟨x , y − 1, z + 2⟩ = 0 which is

−15x − 16y + 7z + 30 = 0.
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Higher Dimension Lines and planes

Cross Product

Definition (Cross Product)

Given two vectors −⇀v and −⇀w in R the cross product −⇀n =
−⇀v × −⇀w is the

vector
−⇀n = ⟨v2w3 − v3w2,−(v1w3 − v3w1), v1w2 − v2w3⟩

which is orthogonal to both −⇀v and −⇀w . Note that −⇀v × −⇀w = −(−⇀w × −⇀v ).

Example

With −⇀v = ⟨1, 0, 2⟩ and −⇀w = ⟨1,−1, 0⟩ the cross product is:

−⇀n =

»»»»»»»»»»»»

i j k
1 0 2
1 −1 0

»»»»»»»»»»»»
= ⟨(0 − (−2)),−(0 − 2),−1 − 0⟩ = ⟨2, 2,−1⟩
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Higher Dimension Lines and planes

Orthogonal Decomposition Theorem

Theorem (Orthogonal Decomposition Theorem)

Let W be a subspace of Rn
, then each y ∈ Rn

can be written uniquely in
the form y = ŷ + z where ŷ ∈ W and z ∈ W

⊥
. In fact, if

{−⇀u 1,
−⇀u 2, . . . ,

−⇀u k} is an orthogonal basis for W , then

ŷ =
y ⋅ −⇀u 1
−⇀u 1 ⋅

−⇀u 1

−⇀u 1 +⋯+
y ⋅ −⇀u k
−⇀u k ⋅

−⇀u k

−⇀u k ,= ∑
−⇀u i

proj−⇀u i
y

and z = y − ŷ .
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Higher Dimension Lines and planes

Orthogonal Bases Reminder

With −⇀v = ⟨1, 0, 2⟩, −⇀w = ⟨1,−1, 0⟩, and −⇀e 1 = ⟨1, 0, 0⟩ we can create an
orthogonal basis:

−⇀p 1 =
−⇀w − proj−⇀v

−⇀w =
1

5
⟨4,−5,−2⟩

−⇀p 2 =
−⇀e 1 − (proj−⇀v −⇀e 1 + proj−⇀p 1

−⇀e 1)

=
2

9
⟨2, 2,−1⟩ = 2

9
−⇀n

So we get a multiple of the same result as the cross product. But, this
process works in arbitrary dimensions.
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Higher Dimension Lines and planes

Another Plane Example

Given −⇀v = ⟨1, 0, 2⟩, −⇀w = ⟨1,−1, 0⟩, and a base point P = (1,−2, 3) we
can write the equation of a plane passing through P and containing

P + −⇀v = (2,−2, 5) and P + −⇀w = (2,−3, 3)

in parametric form as:

f (t, s) = −⇀v ⋅ t + −⇀w ⋅ s + P = (−⇀v −⇀w ) (t
s
) + P = (−⇀v −⇀w P)

⎛
⎜⎜
⎝

t
s
1

⎞
⎟⎟
⎠

where t, s ∈ R or in vector form as:

−⇀n ⋅ ⟨x − 1, y + 2, z − 3⟩ = 0.
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Higher Dimension Lines and planes

Lines in 3d

We can write lines in three dimensions in parametric form like so:

⟨x , y , z⟩ = ⟨∆x ,∆y ,∆z⟩t + ⟨x0, y0, z0⟩

so that each coordinate is its own function

⟨x , y , z⟩ = ⟨∆x ,∆y ,∆z⟩t + ⟨x0, y0, z0⟩
x = ∆x ⋅ t + x0,

y = ∆y ⋅ t + y0, and

z = ∆z ⋅ t + z0.

Or, solving for t we get the symmetric form of the line like so:

t =
x − x0
∆x

=
y − y0
∆y

=
z − z0
∆z

C. F. Rocca Jr. Topic 20 / 42



Limits in Higher Dimensions
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Limits in Higher Dimensions

Motivation from Two Dimensions

(1, 2)

(2, 4)

(2, 0)

(4, 4.5)
1 lim

x→1
f (x) =

2

2 lim
x→2−

f (x) =

4

3 lim
x→2+

f (x) =

0

4 lim
x→2

f (x) =

DNE

5 f
′(1) ≈

− 3

6 f
′(4) ≈

DNE

7 Tangent Line at x = 1:
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Limits in Higher Dimensions

Motivation from Two Dimensions
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Limits in Higher Dimensions

Limits in 3D: First One Variable Then Another

lim
y→π

2

lim
x→π

f (x , y) = lim
y→π

2

−1 + sin(y)

= −1 + 1 = 0

lim
x→π

lim
y→π

2

f (x , y) = lim
y→π

2

cos(x) + 1

= −1 + 1 = 0

f (x , y) = cos(x) + sin(y)
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Limits in Higher Dimensions

Limits in 3D: Along Curves

y = 0: lim
(x,y)→(0,0)

f (x , y) =

1

x = 0: lim
(x,y)→(0,0)

f (x , y) =

− 1

y = ±x : lim
(x,y)→(0,0)

f (x , y) =

0

x = ±2y : lim
(x,y)→(0,0)

f (x , y) =

3

5

x = ±ry , r ≠ 0:

lim
(x,y)→(0,0)

f (x , y) =

r
2 − 1

r 2 + 1

f (x , y) = x
2 − y

2

x2 + y2
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(x,y)→(0,0)

f (x , y) = − 1

y = ±x : lim
(x,y)→(0,0)

f (x , y) = 0

x = ±2y : lim
(x,y)→(0,0)

f (x , y) = 3

5

x = ±ry , r ≠ 0:

lim
(x,y)→(0,0)

f (x , y) = r
2 − 1

r 2 + 1

f (x , y) = x
2 − y

2

x2 + y2
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Limits in Higher Dimensions

Limits in 3D: Definition

Definition

Given a function f ∶ R2
⟶ R and a point P = (x0, y0), we say that the limit as

Q ∈ R2
approaches P is L, written

lim
Q→P

f (Q) = L,

when given ϵ > 0 there exits δ > 0, such that if Q ∈ Bδ(P), then ∣f (Q) − L∣ < ϵ.

r
P

Br(P) = {Q∣d(P,Q) < r}
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Limits in Higher Dimensions

One More Example

z = 2 −
1

2
3
√
x2 + y2
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Partial Derivatives

Difference Quotients and Limits

f (x , y) = 1

10
(x2 − y

2)

∂

∂x
f (x , y) = lim

h→0

f (x + h, y) − f (x , y)
h

=
1

10
lim
h→0

((x + h)2 − y
2) − (x2 − y

2)
h

=
1

10
lim
h→0

(x + h)2 − x
2

h
=

2

10
x
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Partial Derivatives

Difference Quotients and Limits

f (x , y) = 1

10
(x2 − y

2)

∂

∂y
f (x , y) = lim

h→0

f (x , y + h) − f (x , y)
h

=
1

10
lim
h→0

(x2 − (y + h)2) − (x2 − y
2)

h

=
1

10
lim
h→0

−(y + h)2 + y
2

h
= −

2

10
y
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Partial Derivatives

Difference Quotients and Limits

f (x , y) = 1

10
(x2 − y

2)

∂/∂y is the
slope parallel
to the y -axis

∂/∂x is the
slope parallel
to the x-axis
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Partial Derivatives

Derivative With Respect to x Then x Again

Consider g(x , y) = x
2
y
2
:

∂
2

∂x∂x
g(x , y) = ∂

∂x
( ∂

∂x
g(x , y)) =

∂

∂x
( lim
h→0

g(x + h, y) − g(x , y)
h

)

=
∂

∂x
( lim
h→0

y
2((x + h)2 − x

2)
h

) =
∂

∂x
(2xy2)

= lim
h→0

2y
2((x + h) − x)

h
= 2y

2
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Partial Derivatives

Derivative With Respect to x Then y

Consider g(x , y) = x
2
y
2
again:

∂
2

∂y∂x
g(x , y) = ∂

∂y
( ∂

∂x
g(x , y)) =

∂

∂y
( lim
h→0

g(x + h, y) − g(x , y)
h

)

=
∂

∂y
( lim
h→0

y
2((x + h)2 − x

2)
h

) =
∂

∂y
(2xy2)

= lim
h→0

2x(y + h)2 − 2xy
2

h
= lim

h→0

2x((y + h)2 − y
2)

h

= 4xy
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Partial Derivatives

Partials in General

Given a function f ∶ Rn
⟶ R with variables x1, x2, . . . , xn, when we take

the derivative of f with respect to xi we treat the other variables as
constants. So given h(x , y) = x

3 − 7xy
2 + y

7
:

∂

∂x
h =

3x
2
− 7y

2

∂

∂y
h =

− 14xy + 7y
6

∂

∂x ∂x
h =

6x

∂

∂y ∂y
h =

− 14x + 42y

∂

∂y ∂x
h =

− 14y

∂

∂x ∂y
h =

− 14y
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Partial Derivatives

Partials in General
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the derivative of f with respect to xi we treat the other variables as
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Partial Derivatives

Equality of Mixed Partials

Theorem (Clairaut’s Theorem)

Suppose f (x , y) is defined on an open disk D that contains a point (a, b).
If the functions fxy and fyx are continuous on D, then fxy = fyx .
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Partial Derivatives

Unequal Mixed Partials
1

Expressions for mixed partials may appear equal, this doesn’t insure
continuity or equality at every point:

∂
2

∂y∂x

xy (x2 − y
2)

x2 + y2
=

∂
2

∂x∂y

xy (x2 − y
2)

x2 + y2
=

x
6 + 9x

4
y
2 − 9x

2
y
4 − y

6

x6 + 3x4y2 + 3x2y4 + y6

Approaching (0, 0) from different directions the mixed partial reaches
different values:

1
See work at https://math.hawaii.edu/~ramsey/MixedPartialDerivatives
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Partial Derivatives

Partial Derivatives and The Chain Rule:

Suppose f ∶ R2
⟶ R and x and y are also function of a variable t:

d

dt
f (x , y) = ∂

∂x
f (x , y)dx

dt
+

∂

∂y
f (x , y)dy

dt
.

For example f (x , y) = x
2
y
2
, x = cos(t) and y = sin(t) then:

d

dt
f (x , y) = 2xy

2(− sin(t)) + 2yx
2
cos(t).
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Partial Derivatives

Partial Derivatives and The Chain Rule:

Suppose f ∶ R2
⟶ R and x and y are also function of a variable t:

d

dt
f (x , y) = ∂

∂x
f (x , y)dx

dt
+

∂

∂y
f (x , y)dy

dt
= (fx fy) (

xt
yt
) .

For example f (x , y) = x
2
y
2
, x = cos(t) and y = sin(t) then:

d

dt
f (x , y) = 2xy

2(− sin(t)) + 2yx
2
cos(t) = (2xy2 2yx

2) (− sin(t)
cos(t) ) .
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Partial Derivatives

Partial Derivatives and The Chain Rule:

Suppose f ∶ R2
⟶ R and x and y are also function two variables t and s:

∂

∂t
f (x , y) = ∂

∂x
f (x , y)∂x

∂t
+

∂

∂y
f (x , y)∂y

∂t
= (fx fy) (

xt
yt
)

∂

∂s
f (x , y) = ∂

∂x
f (x , y)∂x

∂s
+

∂

∂y
f (x , y)∂y

∂s
= (fx fy) (

xs
ys
)
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Partial Derivatives

Partial Derivatives and The Chain Rule:

Suppose f ∶ Rn
⟶ R with variables xj , 1 ≤ j ≤ n, which are functions of

variables ti , 1 ≤ i ≤ m for some m ∈ N:

∂

∂ti
f (x , y) = ∂

∂x1
f (x , y)∂x1

∂ti
+

∂

∂x2
f (x , y)∂x2

∂ti
+⋯+

∂

∂xn
f (x , y)∂xn

∂ti

= (fx1 fx2 ⋯ fxn)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∂x1
∂ti
∂x2
∂ti
⋮

∂xn
∂ti

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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Partial Derivatives

Partial Derivatives and The Chain Rule

Let f (x , y) = x
2 − y

2
with x = t + cos(s) and y = s + sin(t):

d

d(t, s) f (x , y) = (ft fs) = (fx fy) (
xt xs
yt ys

)

= (2x −2y) ( 1 − sin(s)
cos(t) 1

)

= (2x − 2y cos(t) −2x sin(s) − 2y)

At (t, s) = (0, π) we get (x , y) = (−1, π),
f (x , y) = 1 − π

2
, and the derivatives with respect to

t and s are

d

d(t, s) f (x , y) = (ft fs) = (−2 − 2π −2π)
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Tangents

Tangent Lines Revisited

Given a function f (x) the tangent line at x = x0 is given by

y = f
′(x0)(x − x0) + f (x0)
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Tangents

Tangent Planes to a Surface

Let f (x , y) = x
3 − xy

2
then

∂

∂x
f (x , y) = 3x

2
− y

2
and

∂

∂y
f (x , y) = −2xy .

Then at (x , y) = (1, 1) the slope in the x-direction is 2 and in the
y -direction is −2. Then the tangent plane will be given by

z = fx(x0, y0)(x − x0) + fy(x0, y0)(y − y0) + f (x0 + y0)
= 2(x − 1) − 2(y − 1).
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Tangents

Tangent Vector and Line to a Curve

Given f (t) = ⟨cos(2πt), sin(2πt), t⟩, then

d

dt
f (t) = ⟨−2π sin(2πt), 2π cos(2πt), 1⟩.

The tangent line to the curve at t0 = 1/2 is then given by

l(t) = ⟨xt(t0), yt(t0), zt(t0)⟩t + f (t0)
= ⟨0,−2π, 1⟩t + ⟨−1, 0, 1/2⟩
= ⟨−1,−2πt, t + 1/2⟩
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Tangents
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