Lectures on Multivariable Mathematics: Calculus in Higher Dimensions

Dr. Chuck Rocca roccac@wcsu.edu

Table of Contents

- Objectives
- Different View on Lines
- Higher Dimension Lines and planes
- Limits in Higher Dimensions
- Partial Derivatives
- 6 Tangents

After this lesson you should be able to:

write the equations of lines in higher dimensions,

- write the equations of lines in higher dimensions,
- write the equations for a plane in three or more dimensions,

- write the equations of lines in higher dimensions,
- write the equations for a plane in three or more dimensions,
- comment on the distinction between, linear, line, and affine expressions,

- write the equations of lines in higher dimensions,
- write the equations for a plane in three or more dimensions,
- 3 comment on the distinction between, linear, line, and affine expressions,
- relate the equation of a plane to the equation of a line,

- write the equations of lines in higher dimensions,
- write the equations for a plane in three or more dimensions,
- comment on the distinction between, linear, line, and affine expressions,
- relate the equation of a plane to the equation of a line,
- explain limits and derivatives in higher dimensions,

- write the equations of lines in higher dimensions,
- write the equations for a plane in three or more dimensions,
- comment on the distinction between, linear, line, and affine expressions,
- relate the equation of a plane to the equation of a line,
- explain limits and derivatives in higher dimensions,
- 6 calculate partial derivatives,

- write the equations of lines in higher dimensions,
- write the equations for a plane in three or more dimensions,
- comment on the distinction between, linear, line, and affine expressions,
- relate the equation of a plane to the equation of a line,
- explain limits and derivatives in higher dimensions,
- calculate partial derivatives,
- calculate the derivative of vector valued functions, and

- write the equations of lines in higher dimensions,
- write the equations for a plane in three or more dimensions,
- comment on the distinction between, linear, line, and affine expressions,
- relate the equation of a plane to the equation of a line,
- explain limits and derivatives in higher dimensions,
- calculate partial derivatives,
- o calculate the derivative of vector valued functions, and
- find expressions for tangent planes, vectors, and lines.

Table of Contents

- Objectives
- Different View on Lines
- Migher Dimension Lines and planes
- 4 Limits in Higher Dimensions
- Partial Derivatives
- 6 Tangents

Formats for lines in 2D:

• Point-Slope Form: $y = m(x - x_0) + y_0$

- Point-Slope Form: $y = m(x x_0) + y_0$
- Slope Intercept Form: y = mx + b

- Point-Slope Form: $y = m(x x_0) + y_0$
- Slope Intercept Form: y = mx + b
- Standard Form: Ax + By = C

- Point-Slope Form: $y = m(x x_0) + y_0$
- Slope Intercept Form: y = mx + b
- Standard Form: Ax + By = C
- Parametric Form: $\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle$

- Point-Slope Form: $y = m(x x_0) + y_0$
- Slope Intercept Form: y = mx + b
- Standard Form: Ax + By = C
- Parametric Form: $\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle$

$$m = \Delta y / \Delta x$$

$$b=(-\Delta y\cdot x_0)/\Delta x+y_0$$

$$A = -\Delta y$$
, $B = \Delta x$, and

$$C = -\Delta y \cdot x_0 + \Delta x \cdot y_0$$

$$Ax + By = C$$

$$-\Delta y \cdot x + \Delta x \cdot y = -\Delta y \cdot x_0 + \Delta x \cdot y_0$$

$$\begin{split} -\Delta y \cdot x + \Delta x \cdot y &= -\Delta y \cdot x_0 + \Delta x \cdot y_0 \\ -\Delta y \cdot x + \Delta x \cdot y + \Delta y \cdot x_0 - \Delta x \cdot y_0 &= 0 \end{split}$$

$$-\Delta y \cdot x + \Delta x \cdot y + \Delta y \cdot x_0 - \Delta x \cdot y_0 = 0$$
$$\langle -\Delta y, \Delta x \rangle \cdot \langle x - x_0, y - y_0 \rangle = 0$$

Given
$$P = (-2, 3)$$
 and $Q = (4, -2)$ then

• Normal Vector: $\overrightarrow{N} = \langle -\Delta y, \Delta x \rangle = \langle -(-2-3), 4-(-2) \rangle = \langle 5, 6 \rangle$

Given P = (-2, 3) and Q = (4, -2) then

- Normal Vector: $\overrightarrow{N} = \langle -\Delta y, \Delta x \rangle = \langle -(-2-3), 4 (-2) \rangle = \langle 5, 6 \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x 4, y + 2 \rangle = 0$

Given P = (-2, 3) and Q = (4, -2) then

- Normal Vector: $\overrightarrow{N} = \langle -\Delta y, \Delta x \rangle = \langle -(-2-3), 4-(-2) \rangle = \langle 5, 6 \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x 4, y + 2 \rangle = 0$
- Standard Form: 5(x-4) + 6(y+2) = 0

Given P = (-2, 3) and Q = (4, -2) then

- Normal Vector: $\overrightarrow{N} = \langle -\Delta y, \Delta x \rangle = \langle -(-2-3), 4-(-2) \rangle = \langle 5, 6 \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x 4, y + 2 \rangle = 0$
- Standard Form: 5(x-4) + 6(y+2) = 0
- General Form: 5x + 6y = 8

Given P = (-2, 3) and Q = (4, -2) then

- Normal Vector: $\overrightarrow{N} = \langle -\Delta y, \Delta x \rangle = \langle -(-2-3), 4-(-2) \rangle = \langle 5, 6 \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x 4, y + 2 \rangle = 0$
- Standard Form: 5(x-4) + 6(y+2) = 0
- General Form: 5x + 6y = 8
- Parametric Form:

$$\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle = \langle 6, -5 \rangle t + \langle 4, -2 \rangle$$

Table of Contents

- Objectives
- Different View on Lines
- Higher Dimension Lines and planes
- Limits in Higher Dimensions
- Partial Derivatives
- 6 Tangents

- Normal Vector: $\overrightarrow{N} = \langle a, b \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x x_0, y y_0 \rangle = 0$
- Standard Form: $a(x x_0) + b(y y_0) = 0$
- General Form: $a \cdot x + b \cdot y = a \cdot x_0 + b \cdot y_0$
- Parametric Form: $\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle$

- Normal Vector: $\overrightarrow{N} = \langle a, b, c \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x x_0, y y_0 \rangle = 0$
- Standard Form: $a(x x_0) + b(y y_0) = 0$
- General Form: $a \cdot x + b \cdot y = a \cdot x_0 + b \cdot y_0$
- Parametric Form: $\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle$

- Normal Vector: $\overrightarrow{N} = \langle a, b, c \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x x_0, y y_0, z z_0 \rangle = 0$
- Standard Form: $a(x x_0) + b(y y_0) = 0$
- General Form: $a \cdot x + b \cdot y = a \cdot x_0 + b \cdot y_0$
- Parametric Form: $\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle$

- Normal Vector: $\overrightarrow{N} = \langle a, b, c \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x x_0, y y_0, z z_0 \rangle = 0$
- Standard Form: $a(x x_0) + b(y y_0) + c(z z_0) = 0$
- General Form: $a \cdot x + b \cdot y = a \cdot x_0 + b \cdot y_0$
- Parametric Form: $\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle$

- Normal Vector: $\overrightarrow{N} = \langle a, b, c \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x x_0, y y_0, z z_0 \rangle = 0$
- Standard Form: $a(x x_0) + b(y y_0) + c(z z_0) = 0$
- General Form: $a \cdot x + b \cdot y + c \cdot z = a \cdot x_0 + b \cdot y_0 + c \cdot z_0$
- Parametric Form: $\langle x, y \rangle = \langle \Delta x, \Delta y \rangle t + \langle x_0, y_0 \rangle$

2D to 3D

- Normal Vector: $\overrightarrow{N} = \langle a, b, c \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x x_0, y y_0, z z_0 \rangle = 0$
- Standard Form: $a(x x_0) + b(y y_0) + c(z z_0) = 0$
- General Form: $a \cdot x + b \cdot y + c \cdot z = a \cdot x_0 + b \cdot y_0 + c \cdot z_0$
- Parametric Form: $\langle x, y, z \rangle = \langle \Delta x, \Delta y, \Delta z \rangle t + \langle x_0, y_0, z_0 \rangle$

2D to 3D

- Normal Vector: $\overrightarrow{N} = \langle a, b, c \rangle$
- Vector Equation: $\overrightarrow{N} \cdot \langle x x_0, y y_0, z z_0 \rangle = 0$ Plane
- Standard Form: $a(x x_0) + b(y y_0) + c(z z_0) = 0$ Plane
- General Form: $a \cdot x + b \cdot y + c \cdot z = a \cdot x_0 + b \cdot y_0 + c \cdot z_0$ Plane
- Parametric Form: $\langle x, y, z \rangle = \langle \Delta x, \Delta y, \Delta z \rangle t + \langle x_0, y_0, z_0 \rangle$ Line

2D to 3D

- Normal Vector: $\overrightarrow{N} = \langle a, b, c \rangle$
- Vector Equation: $\vec{N} \cdot (x x_0, y y_0, z z_0) = 0$ Plane
- Standard Form: $a(x x_0) + b(y y_0) + c(z z_0) = 0$ Plane
- General Form: $a \cdot x + b \cdot y + c \cdot z = a \cdot x_0 + b \cdot y_0 + c \cdot z_0$ Plane
- Parametric Form: $\langle x, y, z \rangle = \langle \Delta x, \Delta y, \Delta z \rangle t + \langle x_0, y_0, z_0 \rangle$ Line
- Parametric Form: $\langle x, y, z \rangle = \overrightarrow{v}t + \overrightarrow{w}s + \langle x_0, y_0, z_0 \rangle$ Plane

Lines vs. Planes: Visually

Normal Vectors and "Planes" in \mathbb{R}^n

Given $\overrightarrow{N}, P \in \mathbb{R}^n$ and $\overrightarrow{x} = \langle x_1, x_2, \dots, x_n \rangle$ an *n*-dimensional variable, then

$$\overrightarrow{N} \cdot (\overrightarrow{x} - P) = 0$$

is the "plane" orthogonal to \overline{N} . Which in general form is

$$N_1 x_1 + N_2 x_2 + \dots + N_n x_n = B$$

where $B = N_1 P_1 + N_2 P_2 + \cdots + N_n P_n = \overrightarrow{N} \cdot P$. This is called a hyperplane.

Parametric Definitions and "Planes" in \mathbb{R}^n

Given vectors $\overrightarrow{v}_i \in \mathbb{R}^n$ for $1 \le i \le k$ and a point $P \in \mathbb{R}^n$ then

$$\overrightarrow{y} = t_1 \overrightarrow{v}_1 + t_2 \overrightarrow{v}_2 + \dots + t_k \overrightarrow{v}_k + P$$

where the t_i are one-dimensional variables is an affine space and can be viewed as an image in the since that we can write

$$\overrightarrow{y} = V\overrightarrow{t} + P = (\overrightarrow{v}_1 \quad \overrightarrow{v}_2 \quad \cdots \quad \overrightarrow{v}_k) \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_k \end{pmatrix} + P,$$

a composition of a linear transformation and a translation.

Note that if k = n - 1 then this will be a plane in the same sense as the previous slide with the normal vector \overrightarrow{N} , the basis for V^{\perp} , the orthogonal complement to V.

Linear vs. Affine Functions

Definition

A function f(x) defined on a vector space is linear provided

$$f(ax + by) = af(x) + bf(y)$$

for all vectors x, y and scalars a, b. An affine function is the composition of a linear function and a translation.

Example

This is a linear function:

While this is an affine function:

$$f(\overrightarrow{x}) = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} \overrightarrow{x}$$

$$g(\overrightarrow{x}) = \begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix} \overrightarrow{x} + \begin{pmatrix} 3 \\ -7 \end{pmatrix}$$

Find the plane passing through the points P = (0, 1, -2), Q = (2, 0, 0), and R = (1, 4, 7).

Find the plane passing through the points P = (0, 1, -2), Q = (2, 0, 0), and R = (1, 4, 7).

$$\bullet$$
 $\overrightarrow{v} = Q - P = \langle 2, -1, 2 \rangle$ and $\overrightarrow{w} = R - P = \langle 1, 3, 9 \rangle$

Find the plane passing through the points P = (0, 1, -2), Q = (2, 0, 0), and R = (1, 4, 7).

- $\overrightarrow{v} = Q P = \langle 2, -1, 2 \rangle$ and $\overrightarrow{w} = R P = \langle 1, 3, 9 \rangle$
- Then the plane is given by:

$$\vec{v} \cdot t + \vec{w} \cdot s + P = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix} s + \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 9 & 2 \end{pmatrix} \begin{pmatrix} t \\ s \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 3 & 1 \\ 9 & 2 & -2 \end{pmatrix} \begin{pmatrix} t \\ s \\ 1 \end{pmatrix}$$

Find the plane passing through the points P = (0, 1, -2), Q = (2, 0, 0), and R = (1, 4, 7).

- $\overrightarrow{v} = Q P = \langle 2, -1, 2 \rangle$ and $\overrightarrow{w} = R P = \langle 1, 3, 9 \rangle$
- Then the plane is given by:

$$\overrightarrow{v} \cdot t + \overrightarrow{w} \cdot s + P = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} t + \begin{pmatrix} 1 \\ 3 \\ 9 \end{pmatrix} s + \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$$
$$= \begin{pmatrix} 2 & 1 \\ -1 & 3 \\ 9 & 2 \end{pmatrix} \begin{pmatrix} t \\ s \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ -1 & 3 & 1 \\ 9 & 2 & -2 \end{pmatrix} \begin{pmatrix} t \\ s \\ 1 \end{pmatrix}$$

• In linear algebra we would say \overrightarrow{v} and \overrightarrow{w} form a subspace and then we shift that subspace by adding P.

4 D > 4 A > 4 B > 4 B > B = 90 Q G

C. F. Rocca Jr. Topic 14 / 42

Plane Example: Vector & Standard Form

Find the plane passing through the points P = (0, 1, -2), Q = (2, 0, 0), and R = (1, 4, 7).

$$\bullet$$
 $\overrightarrow{v} = Q - P = \langle 2, -1, 2 \rangle$ and $\overrightarrow{w} = R - P = \langle 1, 3, 9 \rangle$

Plane Example: Vector & Standard Form

Find the plane passing through the points P = (0, 1, -2), Q = (2, 0, 0), and R = (1, 4, 7).

- $\overrightarrow{v} = Q P = \langle 2, -1, 2 \rangle$ and $\overrightarrow{w} = R P = \langle 1, 3, 9 \rangle$
- Find the normal vector \overrightarrow{N} using the **cross product**:

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 2 \\ 1 & 3 & 9 \end{vmatrix} = (-1(9) - 2(3))\vec{i} - (2(9) - 2(1))\vec{j} + (2(3) - (-1)(1))\vec{k}$$
$$= \langle -15, -16, 7 \rangle$$

Plane Example: Vector & Standard Form

Find the plane passing through the points P = (0, 1, -2), Q = (2, 0, 0), and R = (1, 4, 7).

- $\overrightarrow{v} = Q P = \langle 2, -1, 2 \rangle$ and $\overrightarrow{w} = R P = \langle 1, 3, 9 \rangle$
- Find the normal vector \overrightarrow{N} using the **cross product**:

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & -1 & 2 \\ 1 & 3 & 9 \end{vmatrix} = (-1(9) - 2(3))\vec{i} - (2(9) - 2(1))\vec{j} + (2(3) - (-1)(1))\vec{k}$$
$$= \langle -15, -16, 7 \rangle$$

• The plane is given by $\overrightarrow{N} \cdot \langle x, y - 1, z + 2 \rangle = 0$ which is

$$-15x - 16y + 7z + 30 = 0.$$

Cross Product

Definition (Cross Product)

Given two vectors \overrightarrow{v} and \overrightarrow{w} in \mathbb{R} the cross product $\overrightarrow{n} = \overrightarrow{v} \times \overrightarrow{w}$ is the vector

$$\vec{n} = \langle v_2 w_3 - v_3 w_2, -(v_1 w_3 - v_3 w_1), v_1 w_2 - v_2 w_3 \rangle$$

which is orthogonal to both \overrightarrow{v} and \overrightarrow{w} . Note that $\overrightarrow{v} \times \overrightarrow{w} = -(\overrightarrow{w} \times \overrightarrow{v})$.

Example

With $\overrightarrow{v} = \langle 1, 0, 2 \rangle$ and $\overrightarrow{w} = \langle 1, -1, 0 \rangle$ the cross product is:

$$\vec{n} = \begin{vmatrix} i & j & k \\ 1 & 0 & 2 \\ 1 & -1 & 0 \end{vmatrix} = \langle (0 - (-2)), -(0 - 2), -1 - 0 \rangle = \langle 2, 2, -1 \rangle$$

Orthogonal Decomposition Theorem

Theorem (Orthogonal Decomposition Theorem)

Let W be a subspace of \mathbb{R}^n , then each $y \in \mathbb{R}^n$ can be written uniquely in the form $y = \hat{y} + z$ where $\hat{y} \in W$ and $z \in W^{\perp}$. In fact, if $\{\overrightarrow{u}_1, \overrightarrow{u}_2, \ldots, \overrightarrow{u}_k\}$ is an orthogonal basis for W, then

$$\hat{y} = \frac{y \cdot \overrightarrow{u}_1}{\overrightarrow{u}_1 \cdot \overrightarrow{u}_1} \overrightarrow{u}_1 + \dots + \frac{y \cdot \overrightarrow{u}_k}{\overrightarrow{u}_k \cdot \overrightarrow{u}_k} \overrightarrow{u}_k, = \sum_{\overrightarrow{u}_i} proj_{\overrightarrow{u}_i} y$$

and $z = y - \hat{y}$.

With $\overrightarrow{v}=\langle 1,0,2\rangle$, $\overrightarrow{w}=\langle 1,-1,0\rangle$, and $\overrightarrow{e}_1=\langle 1,0,0\rangle$ we can create an orthogonal basis:

With $\overrightarrow{v}=\langle 1,0,2\rangle$, $\overrightarrow{w}=\langle 1,-1,0\rangle$, and $\overrightarrow{e}_1=\langle 1,0,0\rangle$ we can create an orthogonal basis:

$$\overrightarrow{p}_1 = \overrightarrow{w} - proj_{\overrightarrow{v}} \overrightarrow{w} = \frac{1}{5} \langle 4, -5, -2 \rangle$$

With $\overrightarrow{v}=\langle 1,0,2\rangle$, $\overrightarrow{w}=\langle 1,-1,0\rangle$, and $\overrightarrow{e}_1=\langle 1,0,0\rangle$ we can create an orthogonal basis:

$$\overrightarrow{p}_1 = \overrightarrow{w} - \operatorname{proj}_{\overrightarrow{v}} \overrightarrow{w} = \frac{1}{5} \langle 4, -5, -2 \rangle$$

$$\overrightarrow{p}_2 = \overrightarrow{e}_1 - (\operatorname{proj}_{\overrightarrow{v}} \overrightarrow{e}_1 + \operatorname{proj}_{\overrightarrow{p}_1} \overrightarrow{e}_1)$$

With $\overrightarrow{v}=\langle 1,0,2\rangle$, $\overrightarrow{w}=\langle 1,-1,0\rangle$, and $\overrightarrow{e}_1=\langle 1,0,0\rangle$ we can create an orthogonal basis:

$$\overrightarrow{p}_1 = \overrightarrow{w} - \operatorname{proj}_{\overrightarrow{v}} \overrightarrow{w} = \frac{1}{5} \langle 4, -5, -2 \rangle$$

$$\overrightarrow{p}_2 = \overrightarrow{e}_1 - (\operatorname{proj}_{\overrightarrow{v}} \overrightarrow{e}_1 + \operatorname{proj}_{\overrightarrow{p}_1} \overrightarrow{e}_1)$$

$$= \frac{2}{9} \langle 2, 2, -1 \rangle = \frac{2}{9} \overrightarrow{n}$$

With $\overrightarrow{v}=\langle 1,0,2\rangle$, $\overrightarrow{w}=\langle 1,-1,0\rangle$, and $\overrightarrow{e}_1=\langle 1,0,0\rangle$ we can create an orthogonal basis:

$$\overrightarrow{p}_1 = \overrightarrow{w} - \operatorname{proj}_{\overrightarrow{v}} \overrightarrow{w} = \frac{1}{5} \langle 4, -5, -2 \rangle$$

$$\overrightarrow{p}_2 = \overrightarrow{e}_1 - (\operatorname{proj}_{\overrightarrow{v}} \overrightarrow{e}_1 + \operatorname{proj}_{\overrightarrow{p}_1} \overrightarrow{e}_1)$$

$$= \frac{2}{9} \langle 2, 2, -1 \rangle = \frac{2}{9} \overrightarrow{n}$$

So we get a multiple of the same result as the cross product. But, this process works in arbitrary dimensions.

Another Plane Example

Given $\overrightarrow{v}=\langle 1,0,2\rangle$, $\overrightarrow{w}=\langle 1,-1,0\rangle$, and a base point P=(1,-2,3) we can write the equation of a plane passing through P and containing

$$P + \overrightarrow{v} = (2, -2, 5)$$
 and $P + \overrightarrow{w} = (2, -3, 3)$

in parametric form as:

$$f(t,s) = \overrightarrow{v} \cdot t + \overrightarrow{w} \cdot s + P = (\overrightarrow{v} \quad \overrightarrow{w}) \begin{pmatrix} t \\ s \end{pmatrix} + P = (\overrightarrow{v} \quad \overrightarrow{w} \quad P) \begin{pmatrix} t \\ s \\ 1 \end{pmatrix}$$

where $t, s \in \mathbb{R}$ or in vector form as:

$$\overrightarrow{n} \cdot \langle x - 1, y + 2, z - 3 \rangle = 0.$$

Lines in 3d

We can write lines in three dimensions in parametric form like so:

$$\langle x, y, z \rangle = \langle \Delta x, \Delta y, \Delta z \rangle t + \langle x_0, y_0, z_0 \rangle$$

so that each coordinate is its own function

$$\begin{split} \langle x,y,z\rangle &= \langle \Delta x, \Delta y, \Delta z\rangle t + \langle x_0, y_0, z_0\rangle \\ & x = \Delta x \cdot t + x_0, \\ & y = \Delta y \cdot t + y_0, \text{ and} \\ & z = \Delta z \cdot t + z_0. \end{split}$$

Or, solving for t we get the symmetric form of the line like so:

$$t = \frac{x - x_0}{\Delta x} = \frac{y - y_0}{\Delta y} = \frac{z - z_0}{\Delta z}$$

Table of Contents

- Objectives
- Different View on Lines
- Higher Dimension Lines and planes
- 4 Limits in Higher Dimensions
- Partial Derivatives
- 6 Tangents

$$\lim_{x\to 1} f(x) =$$

$$\lim_{x\to 2^-} f(x) =$$

$$\lim_{x\to 2^+} f(x) =$$

$$\lim_{x\to 2} f(x) =$$

$$\circ$$
 $f'(1) \approx$

6
$$f'(4) \approx$$

7 Tangent Line at x = 1:

- $\lim_{x\to 1} f(x) = 2$
- $\lim_{x\to 2^-} f(x) =$
- $\lim_{x\to 2^+} f(x) =$
- $\lim_{x\to 2} f(x) =$
- **6** $f'(4) \approx$
- **7** Tangent Line at x = 1:

- $\lim_{x\to 1} f(x) = 2$
- $\lim_{x \to 2^{-}} f(x) = 4$
- $\lim_{x\to 2^+} f(x) =$
- $\lim_{x\to 2} f(x) =$

- **7** Tangent Line at x = 1:

- $\lim_{x\to 1} f(x) = 2$
- $\lim_{x\to 2^-}f(x)=4$
- $\lim_{x\to 2^+}f(x)=0$
- $\lim_{x\to 2} f(x) =$

- **7** Tangent Line at x = 1:

- $\lim_{x\to 1} f(x) = 2$
- $\lim_{x \to 2^{-}} f(x) = 4$
- $\lim_{x \to 2^+} f(x) = 0$
- $\lim_{x \to 2} f(x) = DNE$

- **7** Tangent Line at x = 1:

$$\lim_{x\to 1} f(x) = 2$$

$$\lim_{x \to 2^{-}} f(x) = 4$$

$$\lim_{x \to 2^+} f(x) = 0$$

$$\lim_{x \to 2} f(x) = DNE$$

⑤
$$f'(1) ≈ -3$$

7 Tangent Line at x = 1:

- $\lim_{x\to 1} f(x) = 2$
- $\lim_{x \to 2^+} f(x) = 0$
- $\lim_{x \to 2} f(x) = DNE$
- **⑤** f'(1) ≈ -3
- **7** Tangent Line at x = 1:

$$\lim_{x\to 1} f(x) = 2$$

$$\lim_{x \to 2^+} f(x) = 0$$

$$\lim_{x\to 2} f(x) = DNE$$

5
$$f'(1) \approx -3$$

7 Tangent Line at x = 1:

$$y = f'(1)(x-1) + 2$$

$$\lim_{x\to 1} f(x) = 2$$

$$\lim_{x \to 2^{-}} f(x) = 4$$

$$\lim_{x \to 2^+} f(x) = 0$$

$$\lim_{x\to 2} f(x) = DNE$$

5
$$f'(1) \approx -3$$

$$\circ$$
 $f'(4) \approx DNE$

1 Tangent Line at
$$x = 1$$
:

$$y = -3(x-1) + 2$$

Limits in 3D: First One Variable Then Another

$$\lim_{y \to \frac{\pi}{2}} \lim_{x \to \pi} f(x, y) = \lim_{y \to \frac{\pi}{2}} -1 + \sin(y)$$
$$= -1 + 1 = 0$$

$$f(x,y) = \cos(x) + \sin(y)$$

23 / 42

C. F. Rocca Jr. Topic

Limits in 3D: First One Variable Then Another

$$\lim_{y \to \frac{\pi}{2}} \lim_{x \to \pi} f(x, y) = \lim_{y \to \frac{\pi}{2}} -1 + \sin(y)$$
$$= -1 + 1 = 0$$

$$\lim_{x \to \pi} \lim_{y \to \frac{\pi}{2}} f(x, y) = \lim_{y \to \frac{\pi}{2}} \cos(x) + 1$$
$$= -1 + 1 = 0$$

$$f(x,y) = \cos(x) + \sin(y)$$

Limits in 3D: Along Curves

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) =$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$x = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) =$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$
• $x = 0$: $\lim_{(x,y)\to(0,0)} f(x,y) = -1$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$x = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = -1$

•
$$y = \pm x$$
: $\lim_{(x,y)\to(0,0)} f(x,y) =$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$x = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = -1$

•
$$y = \pm x$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 0$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$x = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = -1$

•
$$y = \pm x$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 0$

•
$$x = \pm 2y$$
: $\lim_{(x,y)\to(0,0)} f(x,y) =$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$x = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = -1$

•
$$y = \pm x$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 0$

•
$$x = \pm 2y$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = \frac{3}{5}$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

C. F. Rocca Jr.

Topic

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$x = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = -1$

•
$$y = \pm x$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 0$

•
$$x = \pm 2y$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = \frac{3}{5}$

• $x = \pm ry, r \neq 0$:

$$\lim_{(x,y)\to(0,0)} f(x,y) =$$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

•
$$y = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 1$

•
$$x = 0$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = -1$

•
$$y = \pm x$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = 0$

•
$$x = \pm 2y$$
: $\lim_{(x,y)\to(0,0)} f(x,y) = \frac{3}{5}$

• $x = \pm ry, r \neq 0$:

$$\lim_{(x,y)\to(0,0)} f(x,y) = \frac{r^2 - 1}{r^2 + 1}$$

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

C. F. Rocca Jr. Topic

Limits in 3D: Definition

Definition

Given a function $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ and a point $P = (x_0, y_0)$, we say that the limit as $Q \in \mathbb{R}^2$ approaches P is L, written

$$\lim_{Q\to P}f(Q)=L,$$

when given $\epsilon > 0$ there exits $\delta > 0$, such that if $Q \in B_{\delta}(P)$, then $|f(Q) - L| < \epsilon$.

C. F. Rocca Jr. Topic

One More Example

$$z = 2 - \frac{1}{2}\sqrt[3]{x^2 + y^2}$$

Table of Contents

- Objectives
- Different View on Lines
- Higher Dimension Lines and planes
- 4 Limits in Higher Dimensions
- Partial Derivatives
- 6 Tangents

Difference Quotients and Limits

$$f(x,y) = \frac{1}{10}(x^2 - y^2)$$

$$\frac{\partial}{\partial x} f(x, y) = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h}$$

$$= \frac{1}{10} \lim_{h \to 0} \frac{((x + h)^2 - y^2) - (x^2 - y^2)}{h}$$

$$= \frac{1}{10} \lim_{h \to 0} \frac{(x + h)^2 - x^2}{h} = \frac{2}{10} x$$

Difference Quotients and Limits

$$f(x,y) = \frac{1}{10}(x^2 - y^2)$$

$$\frac{\partial}{\partial y} f(x, y) = \lim_{h \to 0} \frac{f(x, y + h) - f(x, y)}{h}$$

$$= \frac{1}{10} \lim_{h \to 0} \frac{(x^2 - (y + h)^2) - (x^2 - y^2)}{h}$$

$$= \frac{1}{10} \lim_{h \to 0} \frac{-(y + h)^2 + y^2}{h} = -\frac{2}{10} y$$

Difference Quotients and Limits

 $\partial/\partial x$ is the slope parallel to the *x*-axis

Derivative With Respect to x Then x Again

Consider $g(x, y) = x^2y^2$:

$$\frac{\partial^2}{\partial x \partial x} g(x, y) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial x} g(x, y) \right) = \frac{\partial}{\partial x} \left(\lim_{h \to 0} \frac{g(x + h, y) - g(x, y)}{h} \right)$$
$$= \frac{\partial}{\partial x} \left(\lim_{h \to 0} \frac{y^2 ((x + h)^2 - x^2)}{h} \right) = \frac{\partial}{\partial x} \left(2xy^2 \right)$$
$$= \lim_{h \to 0} \frac{2y^2 ((x + h) - x)}{h} = 2y^2$$

Derivative With Respect to x Then y

Consider $g(x, y) = x^2 y^2$ again:

$$\frac{\partial^2}{\partial y \partial x} g(x, y) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} g(x, y) \right) = \frac{\partial}{\partial y} \left(\lim_{h \to 0} \frac{g(x + h, y) - g(x, y)}{h} \right)$$

$$= \frac{\partial}{\partial y} \left(\lim_{h \to 0} \frac{y^2 ((x + h)^2 - x^2)}{h} \right) = \frac{\partial}{\partial y} \left(2xy^2 \right)$$

$$= \lim_{h \to 0} \frac{2x(y + h)^2 - 2xy^2}{h} = \lim_{h \to 0} \frac{2x((y + h)^2 - y^2)}{h}$$

$$= 4xy$$

$$\frac{\partial}{\partial x}h = \frac{\partial}{\partial y}h = \frac{\partial}{\partial x}h = \frac{\partial$$

$$\frac{\partial}{\partial y \, \partial y} h = \frac{\partial}{\partial y \, \partial x} h = \frac{\partial}{\partial x \, \partial y} h = \frac{\partial}$$

$$\frac{\partial}{\partial x}h = 3x^2 - 7y^2$$

$$\frac{\partial}{\partial y}h = \frac{\partial}{\partial x \partial x}h = \frac{\partial}{\partial x}h = \frac{\partial}{\partial$$

$$\frac{\partial}{\partial y \, \partial y} h =$$

$$\frac{\partial}{\partial y \, \partial x} h =$$

$$\frac{\partial}{\partial x \, \partial y} h =$$

$$\frac{\partial}{\partial x}h = 3x^2 - 7y^2 \qquad \qquad \frac{\partial}{\partial y \, \partial y}h = \frac{\partial}{\partial y \, \partial x}h = \frac{\partial}{\partial y \, \partial x}h = \frac{\partial}{\partial x \, \partial y}h = \frac$$

$$\frac{\partial}{\partial x}h = 3x^2 - 7y^2 \qquad \qquad \frac{\partial}{\partial y \, \partial y}h = \frac{\partial}{\partial y \, \partial x}h = -14xy + 7y^6 \qquad \qquad \frac{\partial}{\partial y \, \partial x}h = \frac{\partial}{\partial x \, \partial x}h = 6x \qquad \qquad \frac{\partial}{\partial x \, \partial y}h = \frac{\partial}{\partial x \, \partial y}$$

$$\frac{\partial}{\partial x}h = 3x^2 - 7y^2$$
$$\frac{\partial}{\partial y}h = -14xy + 7y^6$$
$$\frac{\partial}{\partial x \partial x}h = 6x$$

$$\frac{\partial}{\partial y \, \partial y} h = -14x + 42y$$
$$\frac{\partial}{\partial y \, \partial x} h = \frac{\partial}{\partial x \, \partial y} h = \frac{\partial}{\partial x \, \partial$$

$$\frac{\partial}{\partial x}h = 3x^2 - 7y^2$$
$$\frac{\partial}{\partial y}h = -14xy + 7y^6$$
$$\frac{\partial}{\partial x \partial x}h = 6x$$

$$\frac{\partial}{\partial y \, \partial y} h = -14x + 42y$$
$$\frac{\partial}{\partial y \, \partial x} h = -14y$$
$$\frac{\partial}{\partial x \, \partial y} h = -14y$$

$$\frac{\partial}{\partial x}h = 3x^2 - 7y^2$$
$$\frac{\partial}{\partial y}h = -14xy + 7y^6$$
$$\frac{\partial}{\partial x \partial x}h = 6x$$

$$\frac{\partial}{\partial y \, \partial y} h = -14x + 42y$$
$$\frac{\partial}{\partial y \, \partial x} h = -14y$$
$$\frac{\partial}{\partial x \, \partial y} h = -14y$$

Equality of Mixed Partials

Theorem (Clairaut's Theorem)

Suppose f(x,y) is defined on an open disk D that contains a point (a,b). If the functions f_{xy} and f_{yx} are continuous on D, then $f_{xy} = f_{yx}$.

Unequal Mixed Partials¹

Expressions for mixed partials may appear equal, this doesn't insure continuity or equality at every point:

$$\frac{\partial^2}{\partial y \partial x} \frac{xy \left(x^2 - y^2\right)}{x^2 + y^2} = \frac{\partial^2}{\partial x \partial y} \frac{xy \left(x^2 - y^2\right)}{x^2 + y^2} = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{x^6 + 3x^4y^2 + 3x^2y^4 + y^6}$$

Approaching (0,0) from different directions the mixed partial reaches different values:

¹See work at https://math.hawaii.edu/~ramsey/MixedPartialDerivatives

C. F. Rocca Jr. Topic 33 / 42

Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ and x and y are also function of a variable t:

$$\frac{d}{dt}f(x,y) = \frac{\partial}{\partial x}f(x,y)\frac{dx}{dt} + \frac{\partial}{\partial y}f(x,y)\frac{dy}{dt}.$$

For example $f(x, y) = x^2y^2$, $x = \cos(t)$ and $y = \sin(t)$ then:

$$\frac{d}{dt}f(x,y) = 2xy^{2}(-\sin(t)) + 2yx^{2}\cos(t).$$

Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ and x and y are also function of a variable t:

$$\frac{d}{dt}f(x,y) = \frac{\partial}{\partial x}f(x,y)\frac{dx}{dt} + \frac{\partial}{\partial y}f(x,y)\frac{dy}{dt} = \begin{pmatrix} f_x & f_y \end{pmatrix}\begin{pmatrix} x_t \\ y_t \end{pmatrix}.$$

For example $f(x, y) = x^2y^2$, $x = \cos(t)$ and $y = \sin(t)$ then:

$$\frac{d}{dt}f(x,y) = 2xy^2(-\sin(t)) + 2yx^2\cos(t) = (2xy^2 \quad 2yx^2)\begin{pmatrix} -\sin(t) \\ \cos(t) \end{pmatrix}.$$

Suppose $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ and x and y are also function two variables t and s:

$$\frac{\partial}{\partial t} f(x,y) = \frac{\partial}{\partial x} f(x,y) \frac{\partial x}{\partial t} + \frac{\partial}{\partial y} f(x,y) \frac{\partial y}{\partial t} = \begin{pmatrix} f_x & f_y \end{pmatrix} \begin{pmatrix} x_t \\ y_t \end{pmatrix}$$

$$\frac{\partial}{\partial s} f(x,y) = \frac{\partial}{\partial x} f(x,y) \frac{\partial x}{\partial s} + \frac{\partial}{\partial y} f(x,y) \frac{\partial y}{\partial s} = \begin{pmatrix} f_x & f_y \end{pmatrix} \begin{pmatrix} x_s \\ y_s \end{pmatrix}$$

Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ with variables x_j , $1 \le j \le n$, which are functions of variables t_i , $1 \le i \le m$ for some $m \in \mathbb{N}$:

$$\frac{\partial}{\partial t_{i}} f(x,y) = \frac{\partial}{\partial x_{1}} f(x,y) \frac{\partial x_{1}}{\partial t_{i}} + \frac{\partial}{\partial x_{2}} f(x,y) \frac{\partial x_{2}}{\partial t_{i}} + \dots + \frac{\partial}{\partial x_{n}} f(x,y) \frac{\partial x_{n}}{\partial t_{i}}$$

$$= (f_{x_{1}} \quad f_{x_{2}} \quad \dots \quad f_{x_{n}}) \begin{pmatrix} \frac{\partial x_{1}}{\partial t_{i}} \\ \frac{\partial x_{2}}{\partial t_{i}} \\ \vdots \\ \frac{\partial x_{n}}{\partial t_{n}} \end{pmatrix}$$

C. F. Rocca Jr. Topic

Let
$$f(x, y) = x^2 - y^2$$
 with $x = t + \cos(s)$ and $y = s + \sin(t)$:

$$\frac{d}{d(t,s)}f(x,y) = \begin{pmatrix} f_t & f_s \end{pmatrix} = \begin{pmatrix} f_x & f_y \end{pmatrix} \begin{pmatrix} x_t & x_s \\ y_t & y_s \end{pmatrix}$$

4□ > 4ⓓ > 4≧ > 4≧ > ½ 90

Let
$$f(x, y) = x^2 - y^2$$
 with $x = t + \cos(s)$ and $y = s + \sin(t)$:

$$\frac{d}{d(t,s)}f(x,y) = \begin{pmatrix} f_t & f_s \end{pmatrix} = \begin{pmatrix} f_x & f_y \end{pmatrix} \begin{pmatrix} x_t & x_s \\ y_t & y_s \end{pmatrix}$$
$$= \begin{pmatrix} 2x & -2y \end{pmatrix} \begin{pmatrix} 1 & -\sin(s) \\ \cos(t) & 1 \end{pmatrix}$$

Let
$$f(x, y) = x^2 - y^2$$
 with $x = t + \cos(s)$ and $y = s + \sin(t)$:

$$\frac{d}{d(t,s)}f(x,y) = \begin{pmatrix} f_t & f_s \end{pmatrix} = \begin{pmatrix} f_x & f_y \end{pmatrix} \begin{pmatrix} x_t & x_s \\ y_t & y_s \end{pmatrix}$$
$$= \begin{pmatrix} 2x & -2y \end{pmatrix} \begin{pmatrix} 1 & -\sin(s) \\ \cos(t) & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 2x - 2y\cos(t) & -2x\sin(s) - 2y \end{pmatrix}$$

Let
$$f(x, y) = x^2 - y^2$$
 with $x = t + \cos(s)$ and $y = s + \sin(t)$:

$$\frac{d}{d(t,s)}f(x,y) = (f_t \quad f_s) = (f_x \quad f_y)\begin{pmatrix} x_t & x_s \\ y_t & y_s \end{pmatrix}$$
$$= (2x \quad -2y)\begin{pmatrix} 1 & -\sin(s) \\ \cos(t) & 1 \end{pmatrix}$$
$$= (2x - 2y\cos(t) \quad -2x\sin(s) - 2y)$$

At $(t,s)=(0,\pi)$ we get $(x,y)=(-1,\pi)$, $f(x,y)=1-\pi^2$, and the derivatives with respect to t and s are

$$\frac{d}{d(t,s)}f(x,y) = \begin{pmatrix} f_t & f_s \end{pmatrix} = \begin{pmatrix} -2 - 2\pi & -2\pi \end{pmatrix}$$

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○

Table of Contents

- Objectives
- Different View on Lines
- Higher Dimension Lines and planes
- Limits in Higher Dimensions
- Partial Derivatives
- Tangents

Tangent Lines Revisited

Given a function f(x) the tangent line at $x = x_0$ is given by

$$y = f'(x_0)(x - x_0) + f(x_0)$$

Tangent Planes to a Surface

Let $f(x, y) = x^3 - xy^2$ then

$$\frac{\partial}{\partial x}f(x,y) = 3x^2 - y^2 \text{ and } \frac{\partial}{\partial y}f(x,y) = -2xy.$$

Then at (x, y) = (1, 1) the slope in the x-direction is 2 and in the y-direction is -2. Then the tangent plane will be given by

$$z = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) + f(x_0 + y_0)$$

= 2(x - 1) - 2(y - 1).

Tangent Vector and Line to a Curve

Given $f(t) = \langle \cos(2\pi t), \sin(2\pi t), t \rangle$, then

$$\frac{d}{dt}f(t) = \langle -2\pi\sin(2\pi t), 2\pi\cos(2\pi t), 1 \rangle.$$

The tangent line to the curve at $t_0 = 1/2$ is then given by

$$\begin{split} I(t) &= \langle x_t(t_0), y_t(t_0), z_t(t_0) \rangle t + f(t_0) \\ &= \langle 0, -2\pi, 1 \rangle t + \langle -1, 0, 1/2 \rangle \\ &= \langle -1, -2\pi t, t + 1/2 \rangle \end{split}$$

Lectures on Multivariable Mathematics: Calculus in Higher Dimensions

Dr. Chuck Rocca roccac@wcsu.edu

