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© define the singular values of a matrix,
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After this lesson you should be able to:

define the singular values of a matrix,
use the singular values and corresponding eigenvectors to decompose
a matrix,

replace the singular value decomposition with the reduced singular
value decomposition,

construct the sample mean vector and the mean-deviation form for a
set of data,

calculate the covariance matrix for a set of data,
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After this lesson you should be able to:

use a covariance matrix to determine the principal component of a set
of data, and
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After this lesson you should be able to:

define the singular values of a matrix,

use the singular values and corresponding eigenvectors to decompose
a matrix,

replace the singular value decomposition with the reduced singular
value decomposition,

construct the sample mean vector and the mean-deviation form for a
set of data,

of data, and

calculate the covariance matrix for a set of data,
use a covariance matrix to determine the principal component of a set

explain why it is called the principal component.
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Singular Value Decomposition
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e Singular Value Decomposition
o
o

[} = =
C. F. Rocca Jr. Topic

DA
4/31



Singular Value Decomposition

A 2 X 3 matrix A is a transformation from R> to R?, for example

4 11 14| _3 2
[8 7 —2}'R — R

Unit Sphere

Image of Sphere After Transformation

Our goal is to find the major and minor axes of the ellipse.
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Singular Value Decomposition

The major and minor axes are the maximum and minimum length
non-zero vectors x associated with multiplication by A:

matrix

—_

X =

=% (ATA)%
From before, the maximum and minimums associated with the symmetric

1A% 1 = (AX) T (AX) = (X TAT) A

80 100 40
B=A"A=[100 170 140

40 140 200
are given by the eigenvalues and vectors of B.
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In the case of

80 100 40
B=A"A=

100 170 140
40 140 200
the eigenvalues are A\; = 360, A, = 90, and A3 = 0 with corresponding
vectors

1/3 -2/3 2/3
Vi=12/3], Vo=|-1/3|, and V3 =|-2/3
2/3 2/3 1/3
and multiplying by A we get
- 18
AV1 = [ 6

}, AV, = [_39], and AVvs = [0
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Singular Value Decomposition

The major axis is in the direction of AV = (18,6) and the minor is
AV, = (3,-9):

Unit Sphere

Image of Sphere After Transformation
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Singular Value Decomposition

Singular Values of a Matrix

Definition (Singular Values of a Matrix)
The singular values of a matrix A are the square roots of the eigenvalues

of ATA. We assume that the singular values/eigenvalues are arranged in
decreasing order and note that o; = \/A; = ||AVv|| where v; is a
corresponding eigenvector.

Given an m X n matrix A, AT A is symmetric and the eigenvectors ofATA,

{ Vi, Vo,eoy V n} form an orthonormal basis for R". Assuming the
eigenvalues are decreasing order and there are r non-zero values, then
{AV1,AVv,,...,AV,} is an orthogonal basis for the column space

(image) of A, a subspace of RM.

N
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Singular Value Decomposition

Let A be a m X n matrix of rank r. Then there exists an m X n matrix > for
which the diagonal entries consist of the singular values of A, o;

= Vi, an

m X m orthogonal matrix U, and an n X n orthogonal matrix V' such that
A=Usv’.
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Singular Value Decomposition

V = [71 Vo o ?,,] Orthogonal Matrix of Eigenvectors
01 0 0
0 0o *** 0 . N
D = ; . Singular Values o; = V\; = |[|Av]|
0 0 - o
D 0, . .
Y = nner } m X n Diagonal Matrix
| 0m—r,r 0m—r,n—r
[ AV Av
U=|—--=- 2 Q-
L 1AVl 1AV,

AV;
— 0
|AV |l

(= AV, = UL =AVand UZV =AWW' = A
=] =

0 0] m X m Matrix of Normed Images
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Using our original example

4 11 14
A=ls 7 5

-2
we can write A= ULV = UDV", the Reduced SVD with

= [3/V10 1/V10
- [1/v10 —3/\@}
[6V/10 0
r=b=1" 3\@}
vT = [ 1/3

2/3

2/3
| -2/3 -1/3 2/3
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If we start with a 3 X 2 matrix like so:
0 1
A=(1 1 sothatATA:|:
01

11
13
and we get eigenvalues of 2 + v/2 =~ 3.414 and 0.586 and the matrix of

V ~ [0.383

0.924
0.924 -0.383]"

eigenvectors is

Using these we get

1/2 -1/2
U={ﬁﬂ-ﬁﬁ] z={
1/2

V2 +4/2
~1/2

0 _(184 0
0 2 -2 "L 0 0765
=] =
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Singular Value Decomposition

The result of transforming the unit circle with

0 1 /2 -1/2
A=[1 1]=|V2/2 V2/2 [ 2+4¥2 0 Mg'ggi _0(')932;'3]
0 1] |[1/2 -1/2 2-v2)% '

Unit Circle Image of Circle After Transformation
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Singular Value Decomposition

If we start with a 3 X 2 matrix like so:

A_[O 4]sothatA A—|:
eigenvectors is

4 6
6 25
then we get eigenvalues of \; = 2.41 and 26.59 and the matrix of

Vo~ -0.966 —0.257
T 0257  —0.966 |
Using these we get

y - [-0-750 —0.662
~| 0.662 —0.750

0 5.157]
=] 5
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Singular Value Decomposition

The result of transforming the unit circle with

A= 2 3| _[-0.750 —-0.6627[1.551 0 -0.966 0.257
|0 4|7 | 0.662 -0.750]| O 5.157 || -0.257 -0.966
Circle Post-Image
Circle Pre-Image A
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© Means and Variance
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Here we have a matrix of nutritional data for 77 different cereals:
fiber 10.0 2.0
Data = fat =

90 -+ 3.0
1.0 5.0 1.0 ---
calories 70.0 120.0 70.0

3.0
1.0
And, here is a scatter plot of that data:

1.0
1.0 1.0
100.0 100.0 110.0

_.-” z —— : v
AT 7~
L —
o 7 —
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Means and Variance

We will begin by finding the mean for each row of data:

mean fiber E
M = mean fat =

fat
mean calories cal
1 2.15194805194805
= N Z Data; = | 1.01298701298701
cols of Data 106.883116883117

=] F
C. F. Rocca Jr. Topic

19/31



Means and Variance

Then we subtract the mean values from each entry to get the signed
deviations, (x — X):

fiber — fib 785 —0.152 -.- 0.848 -1.15
B=| fat—fat |=|-0013 399 ... —0.013 -0.013
calories — cal -36.9 13.1 - -6.88 3.12

If we plot this new data set, it has the same form but is centered on the
mean vector:

sau0|ed

20/31



Means and Variance

Next we construct the covariance matrix

-13.6
0.0401 1.01 9.78
-13.6 9.78

in which each entry looks like

380.0
Z (XI - X)

5.68 0.0401
5 = mBB

Z(XI_X) Yi— )

the variance in individual variables or covariance between variables
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Means and Variance

Definition

Given sets of data X = {xq,x,...,xy} and Y = {y1, y5, ..., yn} with means X

and y the sums
Z( '—X) and Z(y,

measure the variance of each individual set data from its mean. While the sum

Z (x — X)(y, y)

measures the covariance between the variables (how they change compared to
one another), if this is 0 we say they are uncorrelated. Finally the sum of the
variances across variables is called the total variance, a measure of how spread
out all the data is.

[} = =
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Means and Variance

Returning to the matrix

) 5.68  0.0401
§=—7BB" =|0.0401 101

9.78

-13.6
9.78

380.0

-13.6
the diagonal entries are the variances, the off diagonal entries are the

covariances, and the sum of the diagonal entries, called the trace, is the
total variance, trace(S) = 386.32
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Principal Component Analysis

@ Principal Component Analysis
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Principal Component Analysis

Theorem (Principal Axes Theorem)

Let A be an n X n symmetric matrix, then there is an orthogonal change of
variable, x = P, that transforms the quadratic form x TAX into a
quadratic form 7TD7 with no cross terms. Note the orthogonal matrix P
and diagonal matrix D, with A = PDP", exist because A is symmetric.

[} = JQAC
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Principal Component Analysis

From before we have our covariance matrix

1
S =

5.68 0.0401 —13.6

- mBBTz 0.0401 1.01 9.78
~13.6 9.78

variable with

380.0
which by construction is symmetric so that we can find a change of

x'sx=y"Dy
where D is a diagonal matrix.
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Principal Component Analysis

As before, we find D and P so that S = PDP™! = PDPT using
eigenvalues and eigenvectors:

380.0 O 0 0.0363  0.995
D = 0 5.22 0 and P =
0 0 0.726

—0.0874
—0.0257 0.0883  0.996
-0.999 0.0339
Then we let y = P™X to get

—0.0288
—_— —_ —_— T —_ —_ —_ —_ —_

yTDy = (PTX) DP'X =x"PDP"X =X "S%.
The advantage of working with the 7y is that pairs of variables are

uncorrelated, and of course calculations with a diagonal matrix are simpler.
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Principal Component Analysis

Constructing Principal Components: Example

Since the matrices P and P are orthogonal they don't change lengths or
angles so

Total Variance = trace(S) = trace(D) ~ 386.32.
We can more easily look at variation due to the variables y since they are
uncorrelated, in particular
0y = PI? accounts for 380/386 ~ 98.45% of variation,
0y, = PQT? accounts for 5/386 ~ 1.30% of variation, and

o ys3= 3;? accounts for 0.73/386 = 0.19% of variation.

This means if we describe our data using two variables 1 and 7y, instead
of three separate variables, we still get approximately 99.75% of the same
information.
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Principal Component Analysis

With

v =(0.036,-0.026,—0.999) and w = (0.996,0.088,0.034)

(the eigenvectors corresponding to the two largest eigenvalues) the plane
defined by M + V't + ws approximates our data in two dimensions:

. - —
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)"
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
@ X, Data Matrix

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)(X = X)

T
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
@ X, Data Matrix

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)(X = X)

T
° X, Sample Means
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)"
@ X, Data Matrix
° X, Sample Means

e B=X —7, Mean Deviation
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
@ X, Data Matrix
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T
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
@ X, Data Matrix

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)(X = X)

T
° X, Sample Means

e B=X —7, Mean Deviation
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e S= ﬁBB , Covariance
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)".

@ X, Data Matrix
° X, Sample Means

e B=X —7, Mean Deviation

_ 1 T .
S= EBB , Covariance
e S=PDP", Ortho. Diag.
Define Y = P’ X,
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)".

i — 1

° i Data Matrix v - 5 z v,
@ X, Sample Means i

- L 1 T
@ B = X — X, Mean Deviation =N Z P X
e S= ﬁBBT, Covariance _pT (% ZX")
o S=PDP’, Ortho. Diag. —

=P X

Define Y = P’ X,

=] 5 = = DAy
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)".

@ X, Data Matrix
° X, Sample Means
e B=X —7, Mean Deviation

T .
S = ﬁBB , Covariance

e S=PDP", Ortho. Diag.
Define Y = P’ X,
oY = PT7
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)".

@ X, Data Matrix
X, Sample Means
e B=X —7, Mean Deviation

T )
S = ﬁBB , Covariance

e S=PDP", Ortho. Diag.

@ Define Y = P'X,
oY = PT7

Y-Y=P Xx-P'X

=P’ (X-X)

=P'B

=
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal

matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)".

@ X, Data Matrix
@ X, Sample Means
e B=X —7, Mean Deviation

T )
S = ﬁBB , Covariance

e S=PDP", Ortho. Diag.
Define Y = P’ X,

]
07=PT7
eY-Y=P'B
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)".

@ X, Data Matrix 1 — —\T
5 7= (Y -Y)(v-Y)
@ X, Sample Means 1 . - T
@ B =X — X, Mean Deviation “TN-1 (P B)(P B)
1
_ 1 T . _ TopT
e S= EBB , Covariance =N_1 1P BB P
@ S=PDP", Ortho. Diag. - PTﬁBBTP
o Define Y = P'X, -p’sp=pD
e Y=P'X
eY-Y=P'B
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Principal Component Analysis

The covariance matrix for the s as defined above is precisely the diagonal
matrix D of eigenvalues for the covariance matrix S = ﬁ(X - X)X -X)".

@ X, Data Matrix 1 — —\T

@ X, Sample Means N-1 (Y _1Y) (Y B Y) .
@ B = X — X, Mean Deviation TN-1 (PTB) (PTB)
o S=:BB", Covariance = ﬁPTBBTP

@ S=PDP", Ortho. Diag. - PTﬁBBTP

o Define Y = P'X, -p’sp=pD

e Y=P'X

°oY-Y=P'B

@ Covariance of Y is D
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