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Objectives

Objectives

After this lesson you should be able to:

1 define the singular values of a matrix,

2 use the singular values and corresponding eigenvectors to decompose
a matrix,

3 replace the singular value decomposition with the reduced singular
value decomposition,

4 construct the sample mean vector and the mean-deviation form for a
set of data,

5 calculate the covariance matrix for a set of data,

6 use a covariance matrix to determine the principal component of a set
of data, and

7 explain why it is called the principal component.
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Singular Value Decomposition

Motivating Example

A 2 × 3 matrix A is a transformation from R3
to R2

, for example:

[4 11 14
8 7 −2

] ∶ R3
⟶ R2

Our goal is to find the major and minor axes of the ellipse.
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Singular Value Decomposition

Minimums and Maximums for Non-Square Transformations

The major and minor axes are the maximum and minimum length
non-zero vectors −⇀x associated with multiplication by A:

∥A−⇀x ∥2
= (A−⇀x )T (A−⇀x ) = (−⇀x T

A
T )A−⇀x =

−⇀x
T (AT

A)−⇀x

From before, the maximum and minimums associated with the symmetric
matrix

B = A
T
A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

80 100 40
100 170 140
40 140 200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
are given by the eigenvalues and vectors of B.
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Singular Value Decomposition

Minimums and Maximums for Non-Square Transformations

In the case of

B = A
T
A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

80 100 40
100 170 140
40 140 200

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
the eigenvalues are λ1 = 360, λ2 = 90, and λ3 = 0 with corresponding
vectors

−⇀v 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/3
2/3
2/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, −⇀v 2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2/3
−1/3
2/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, and −⇀v 3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2/3
−2/3
1/3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and multiplying by A we get

A−⇀v 1 = [18
6
] , A−⇀v 2 = [ 3

−9
] , and A−⇀v 3 = [0

0
]
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Singular Value Decomposition

Motivating Example Revisited

The major axis is in the direction of A−⇀v 1 = ⟨18, 6⟩ and the minor is
A−⇀v 2 = ⟨3,−9⟩:
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Singular Value Decomposition

Singular Values of a Matrix

Definition (Singular Values of a Matrix)

The singular values of a matrix A are the square roots of the eigenvalues
of A

T
A. We assume that the singular values/eigenvalues are arranged in

decreasing order and note that σi =
√
λi = ∥A−⇀v i∥ where −⇀v i is a

corresponding eigenvector.

Theorem

Given an m × n matrix A, A
T
A is symmetric and the eigenvectors of A

T
A,

{−⇀v 1,
−⇀v 2, . . . ,

−⇀v n} form an orthonormal basis for Rn
. Assuming the

eigenvalues are decreasing order and there are r non-zero values, then
{A−⇀v 1,A

−⇀v 2, . . . ,A
−⇀v r} is an orthogonal basis for the column space

(image) of A, a subspace of RM
.
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Singular Value Decomposition

Singular Value Decomposition: Theorem

Theorem

Let A be a m×n matrix of rank r . Then there exists an m× n matrix Σ for
which the diagonal entries consist of the singular values of A, σi =

√
λi , an

m ×m orthogonal matrix U, and an n × n orthogonal matrix V such that

A = UΣV
T
.
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Singular Value Decomposition

Singular Value Decomposition: A = UΣV
T

V = [−⇀v 1
−⇀v 2 ⋯ −⇀v n] Orthogonal Matrix of Eigenvectors

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 0 ⋯ 0
0 σ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ σr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Singular Values σi =
√
λi = ∥A−⇀v i∥

Σ = [ D 0r ,n−r
0m−r ,r 0m−r ,n−r

] m × n Diagonal Matrix

U = [ A−⇀v 1

∥A−⇀v 1∥
⋯ A−⇀v r

∥A−⇀v r∥
0⋯ 0] m ×m Matrix of Normed Images

A−⇀v i

∥A−⇀v i∥
σi = A−⇀v i ⟹ UΣ = AV and UΣV

T
= AVV

T
= A
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Singular Value Decomposition

Singular Value Decomposition: m × n with n > m

Using our original example

A = [4 11 14
8 7 −2

]

we can write A = UΣV
T
= UDV

T
, the Reduced SVD with

U = [3/
√
10 1/

√
10

1/
√
10 −3/

√
10
]

Σ = D = [6
√
10 0

0 3
√
10
]

V
T
= [ 1/3 2/3 2/3

−2/3 −1/3 2/3]
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Singular Value Decomposition

Singular Value Decomposition: m × n with n < m

If we start with a 3 × 2 matrix like so:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
so that A

T
A = [1 1

1 3
]

and we get eigenvalues of 2 ±
√
2 ≈ 3.414 and 0.586 and the matrix of

eigenvectors is

V ≈ [0.383 0.924
0.924 −0.383

] .

Using these we get

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 −1/2√
2/2

√
2/2

1/2 −1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Σ = [

√
2 +

√
2 0

0
√
2 −

√
2
] ≈ [1.84 0

0 0.765
]
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Singular Value Decomposition

Singular Value Decomposition: m × n with n < m

The result of transforming the unit circle with

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
1 1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/2 −1/2√
2/2

√
2/2

1/2 −1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
√
2 +

√
2 0

0
√
2 −

√
2
] [0.383 0.924

0.924 −0.383
]
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Singular Value Decomposition

Singular Value Decomposition: m × n with n = m

If we start with a 3 × 2 matrix like so:

A = [2 3
0 4

] so that A
T
A = [4 6

6 25
]

then we get eigenvalues of λi ≈ 2.41 and 26.59 and the matrix of
eigenvectors is

V ≈ [−0.966 −0.257
0.257 −0.966

] .

Using these we get

U = [−0.750 −0.662
0.662 −0.750

] Σ ≈ [1.551 0
0 5.157

]
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Singular Value Decomposition

Singular Value Decomposition: m × n with n = m

The result of transforming the unit circle with

A = [2 3
0 4

] ≈ [−0.750 −0.662
0.662 −0.750

] [1.551 0
0 5.157

] [−0.966 0.257
−0.257 −0.966

]
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Means and Variance

Displaying Some Data

Here we have a matrix of nutritional data for 77 different cereals:

Data =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

fiber
fat

calories

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

10.0 2.0 9.0 ⋯ 3.0 3.0 1.0
1.0 5.0 1.0 ⋯ 1.0 1.0 1.0
70.0 120.0 70.0 ⋯ 100.0 100.0 110.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
And, here is a scatter plot of that data:
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Means and Variance

Constructing the Sample Mean Vector

We will begin by finding the mean for each row of data:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

mean fiber
mean fat

mean calories

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fib

fat

cal

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
1

N
∑

cols of Data

Datai =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.15194805194805
1.01298701298701
106.883116883117

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Means and Variance

Constructing the Mean-Deviation Form

Then we subtract the mean values from each entry to get the signed
deviations, (x − x):

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

fiber − fib

fat − fat

calories − cal

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.85 −0.152 ⋯ 0.848 −1.15
−0.013 3.99 ⋯ −0.013 −0.013
−36.9 13.1 ⋯ −6.88 3.12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
If we plot this new data set, it has the same form but is centered on the
mean vector:
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Means and Variance

Construct the Covariance Matrix

Next we construct the covariance matrix

S =
1

N − 1
BB

T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.68 0.0401 −13.6
0.0401 1.01 9.78
−13.6 9.78 380.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
in which each entry looks like

∑
i

(xi − x)2
N − 1

or ∑
i

(xi − x)(yi − y)
N − 1

the variance in individual variables or covariance between variables.
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Means and Variance

Variance, Covariance, and Total Variance

Definition

Given sets of data X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN} with means x
and y the sums

∑
i

(xi − x)2
N − 1

and ∑
i

(yi − y)2
N − 1

measure the variance of each individual set data from its mean. While the sum

∑
i

(xi − x)(yi − y)
N − 1

measures the covariance between the variables (how they change compared to
one another), if this is 0 we say they are uncorrelated. Finally the sum of the
variances across variables is called the total variance, a measure of how spread
out all the data is.
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Means and Variance

Variance, Covariance, and Total Variance

Returning to the matrix

S =
1

N − 1
BB

T
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.68 0.0401 −13.6
0.0401 1.01 9.78
−13.6 9.78 380.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
the diagonal entries are the variances, the off diagonal entries are the
covariances, and the sum of the diagonal entries, called the trace, is the
total variance, trace(S) ≈ 386.32
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Principal Component Analysis

Change of Data Variables: What We Want

Theorem (Principal Axes Theorem)

Let A be an n× n symmetric matrix, then there is an orthogonal change of
variable, −⇀x = P−⇀y , that transforms the quadratic form −⇀x T

A−⇀x into a
quadratic form −⇀y T

D−⇀y with no cross terms. Note the orthogonal matrix P
and diagonal matrix D, with A = PDP

T
, exist because A is symmetric.
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Principal Component Analysis

Change of Data Variables: Relation to Covariance

From before we have our covariance matrix

S =
1

N − 1
BB

T
≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.68 0.0401 −13.6
0.0401 1.01 9.78
−13.6 9.78 380.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
which by construction is symmetric so that we can find a change of
variable with

−⇀x
T
S−⇀x =

−⇀y
T
D−⇀y

where D is a diagonal matrix.
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Principal Component Analysis

Constructing Principal Components: Example

As before, we find D and P so that S = PDP
−1

= PDP
T

using
eigenvalues and eigenvectors:

D ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

380.0 0 0
0 5.22 0
0 0 0.726

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and P ≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0363 0.995 −0.0874
−0.0257 0.0883 0.996
−0.999 0.0339 −0.0288

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

Then we let −⇀y = P
T−⇀x to get

−⇀y
T
D−⇀y = (PT−⇀x )

T
DP

T−⇀x =
−⇀x

T
PDP

T−⇀x =
−⇀x

T
S−⇀x .

The advantage of working with the −⇀y is that pairs of variables are
uncorrelated, and of course calculations with a diagonal matrix are simpler.
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Principal Component Analysis

Constructing Principal Components: Example

Since the matrices P and P
T

are orthogonal they don’t change lengths or
angles so

Total Variance = trace(S) = trace(D) ≈ 386.32.

We can more easily look at variation due to the variables −⇀y since they are
uncorrelated, in particular

−⇀y 1 =
−⇀
P

T
1
−⇀x accounts for 380/386 ≈ 98.45% of variation,

−⇀y 2 =
−⇀
P

T
2
−⇀x accounts for 5/386 ≈ 1.30% of variation, and

−⇀y 3 =
−⇀
P

T
3
−⇀x accounts for 0.73/386 ≈ 0.19% of variation.

This means if we describe our data using two variables −⇀y 1 and −⇀y 2 instead
of three separate variables, we still get approximately 99.75% of the same
information.
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Principal Component Analysis

Constructing Principal Components: Example

With

−⇀v = ⟨0.036,−0.026,−0.999⟩ and −⇀w = ⟨0.996, 0.088, 0.034⟩

(the eigenvectors corresponding to the two largest eigenvalues) the plane
defined by M + −⇀v t + −⇀ws approximates our data in two dimensions:
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Principal Component Analysis

Constructing Principal Components: A Little Theory

The covariance matrix for the −⇀y ’s as defined above is precisely the diagonal

matrix D of eigenvalues for the covariance matrix S =
1

N−1
(X − X )(X − X )T .

X , Data Matrix

X , Sample Means

B = X − X , Mean Deviation

S =
1

N−1
BB

T
, Covariance

S = PDP
T
, Ortho. Diag.

Define Y = P
T
X ,

Y = P
T
X

Y − Y = P
T
B

Covariance of Y is D
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Principal Component Analysis

Constructing Principal Components: A Little Theory
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