Discrete Math Review

Dr. Chuck Rocca

roccac@wcsu.edu
http://sites.wcsu.edu/roccac

WESTERN

CONNECTICUT

STATE UNIVERSITY
MACRICOSTAS
SCHOOL OF ARTS
$\&$ SCIENCES
C. F. Rocca Jr. (WCSU)

Review

Table of Contents

(1) Sets, Relations, and Functions
(2) Graph Theory
(3) Theorems and Proofs
(4) Next Class

Table of Contents

(1) Sets, Relations, and Functions
(2) Graph Theory
(3) Theorems and Proofs
4) Next Class

Sets

- Sets:

$$
\begin{aligned}
& A=\{a, e, i, o, u, y\} \text { and } \\
& B=\{b, c, d, f, g, h, \ldots, z\}
\end{aligned}
$$

Sets

- Sets:

$$
\begin{aligned}
& A=\{a, e, i, o, u, y\} \text { and } \\
& B=\{b, c, d, f, g, h, \ldots, z\}
\end{aligned}
$$

Sets

- Sets:

$$
\begin{aligned}
& A=\{a, e, i, o, u, y\} \text { and } \\
& B=\{b, c, d, f, g, h, \ldots, z\}
\end{aligned}
$$

- Union:
$A \cup B=\{a, b, c, d, e, \ldots, z\}$

Sets

- Sets:

$$
\begin{aligned}
& A=\{a, e, i, o, u, y\} \text { and } \\
& B=\{b, c, d, f, g, h, \ldots, z\}
\end{aligned}
$$

- Union:
$A \cup B=\{a, b, c, d, e, \ldots, z\}$
- Intersection:
$A \cap B=\{y\}$

Sets

- Sets:

$$
\begin{aligned}
& A=\{a, e, i, o, u, y\} \text { and } \\
& B=\{b, c, d, f, g, h, \ldots, z\}
\end{aligned}
$$

- Union:
$A \cup B=\{a, b, c, d, e, \ldots, z\}$
- Intersection:
$A \cap B=\{y\}$
- Complement:

$$
A^{c}=(B \backslash\{y\}) \cup\{0,1, \ldots, 9\}
$$

Sets

- Sets:

$$
\begin{aligned}
& A=\{a, e, i, o, u, y\} \text { and } \\
& B=\{b, c, d, f, g, h, \ldots, z\}
\end{aligned}
$$

- Union:
$A \cup B=\{a, b, c, d, e, \ldots, z\}$
- Intersection:
$A \cap B=\{y\}$
- Complement:

$$
A^{c}=(B \backslash\{y\}) \cup\{0,1, \ldots, 9\}
$$

- Universal Set:
$\mathscr{U}=A \cup B \cup\{0,1, \ldots, 9\}$

New Sets from Old

- $A=\{a, b, c\}$ and $B=\{0,1,2\}$

New Sets from Old

- $A=\{a, b, c\}$ and $B=\{0,1,2\}$
- Cartesian Product:

$$
A \times B=\{(a, 0),(a, 1),(a, 2),(b, 0),(b, 1),(b, 2),(c, 0),(c, 1),(c, 2)\}
$$

New Sets from Old

- $A=\{a, b, c\}$ and $B=\{0,1,2\}$
- Cartesian Product:

$$
A \times B=\{(a, 0),(a, 1),(a, 2),(b, 0),(b, 1),(b, 2),(c, 0),(c, 1),(c, 2)\}
$$

- Power Set:

$$
\begin{aligned}
\mathscr{P}(A) & =\{\emptyset,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} \\
|\mathscr{P}(A)| & =2^{|A|}
\end{aligned}
$$

Cardinality of a Power Set: $|\mathscr{P}(S)|=2^{|S|}$

- $A=\{0,1\}$ and $B=\{0,1,2\}$

Cardinality of a Power Set: $|\mathscr{P}(S)|=2^{|S|}$

- $A=\{0,1\}$ and $B=\{0,1,2\}$
- $\mathscr{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$

Cardinality of a Power Set: $|\mathscr{P}(S)|=2^{|S|}$

- $A=\{0,1\}$ and $B=\{0,1,2\}$
- $\mathscr{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$
- $\mathscr{P}(B)=$?

$$
\begin{aligned}
\mathscr{P}(B) & =\mathscr{P}(A) \cup\left(\bigcup_{s \in \mathscr{P}(A)}\{s \cup\{2\}\}\right) \\
& =\{\emptyset,\{0\},\{1\},\{0,1\}\} \cup\{\{2\},\{0,2\},\{1,2\},\{0,1,2\}\} \\
& =\{\emptyset,\{0\},\{1\},\{0,1\},\{2\},\{0,2\},\{1,2\},\{0,1,2\}\}
\end{aligned}
$$

Cardinality of a Power Set: $|\mathscr{P}(S)|=2^{|S|}$

- $A=\{0,1\}$ and $B=\{0,1,2\}$
- $\mathscr{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$
- $\mathscr{P}(B)=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$

Cardinality of a Power Set: $|\mathscr{P}(S)|=2^{|S|}$

- $A=\{0,1\}$ and $B=\{0,1,2\}$
- $\mathscr{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$
- $\mathscr{P}(B)=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$
- $|\mathscr{P}(B)|=$?

$$
\begin{aligned}
|\mathscr{P}(B)| & =|\mathscr{P}(A)|+\left|\bigcup_{s \in \mathscr{P}(A)}\{s \cup\{2\}\}\right| \\
& =|\mathscr{P}(A)|+\sum_{s \in \mathscr{P}(A)}|\{s \cup\{2\}\}| \\
& =|\mathscr{P}(A)|+|\mathscr{P}(A)| \\
& =2 \cdot|\mathscr{P}(A)|
\end{aligned}
$$

Cardinality of a Power Set: $|\mathscr{P}(S)|=2^{|S|}$

- $A=\{0,1\}$ and $B=\{0,1,2\}$
- $\mathscr{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$
- $\mathscr{P}(B)=\{\emptyset,\{0\},\{1\},\{2\},\{0,1\},\{0,2\},\{1,2\},\{0,1,2\}\}$
- $|\mathscr{P}(B)|=2 \cdot|\mathscr{P}(A)|=2 \cdot 2^{|A|}=2^{|A|+1}=2^{|B|}$

Relations

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.

Relations

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.
Given:

$$
A \times B=\{(a, 0),(a, 1),(a, 2),(b, 0),(b, 1),(b, 2),(c, 0),(c, 1),(c, 2)\}
$$

Relations

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.
Given:

$$
A \times B=\{(a, 0),(a, 1),(a, 2),(b, 0),(b, 1),(b, 2),(c, 0),(c, 1),(c, 2)\}
$$

A sample relation might be:

$$
\mathcal{R}=\{(a, 0),(a, 1),(a, 2),(b, 1),(b, 2),(c, 2)\}
$$

Relations

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.
Given:

$$
A \times A=\{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c)\}
$$

Relations

Definition (Relation)

A relation between two sets is a subset of their Cartesian product.
Given:

$$
A \times A=\{(a, a),(a, b),(a, c),(b, a),(b, b),(b, c),(c, a),(c, b),(c, c)\}
$$

A sample relation might be:

$$
\mathcal{O}=\{(a, b),(a, c),(b, c)\}
$$

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{O}=\{(a, b),(a, c),(b, c)\}
$$

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{O}=\{(a, b),(a, c),(b, c)\}
$$

Since a does not relate to its self $(a \nsim a)$ this is not reflexive.

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{O}=\{(a, b),(a, c),(b, c)\}
$$

Since a relates to $b(a \sim b)$ but b does not relate to $a(b \nsim a)$ this is not symmetric.

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{O}=\{(a, b),(a, c),(b, c)\}
$$

Since $a \sim b$ and $b \sim c$ and $a \sim c$ this is transitive.

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{C}=\{(a, a),(a, b),(b, a),(b, b),(c, c)\}
$$

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{C}=\{(a, a),(a, b),(b, a),(b, b),(c, c)\}
$$

Since $a \sim a, b \sim b$, and $c \sim c$ this is reflexive.

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{C}=\{(a, a),(a, b),(b, a),(b, b),(c, c)\}
$$

Since $a \sim b$ and $b \sim a$ this is symmetric.

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{C}=\{(a, a),(a, b),(b, a),(b, b),(c, c)\}
$$

Since $a \sim b, b \sim a$ and $a \sim a$ (also, $b \sim a, a \sim b$, and $b \sim b$) this is transitive.

Equivalence Relation

Definition (Equivalence Relation)

A relation between a set and its self is an equivalence relation if and only if it is reflexive, symmetric, and transitive.

Given the relation on A :

$$
\mathcal{C}=\{(a, a),(a, b),(b, a),(b, b),(c, c)\}
$$

This relation is am equivalence relation.

Function

Definition (Function)

A function is a relation between two sets, the first called the domain and the second the co-domain, such that for all x in the domain there exists a unique y in the co-domain such that (x, y) is in the relation.

Function

Definition (Function)

A function is a relation between two sets, the first called the domain and the second the co-domain, such that for all x in the domain there exists a unique y in the co-domain such that (x, y) is in the relation.

Given:

$$
A \times B=\{(a, 0),(a, 1),(a, 2),(b, 0),(b, 1),(b, 2),(c, 0),(c, 1),(c, 2)\}
$$

The relation:

$$
\mathcal{R}=\{(a, 0),(a, 1),(a, 2),(b, 1),(b, 2),(c, 2)\}
$$

is not a function

Function

Definition (Function)

A function is a relation between two sets, the first called the domain and the second the co-domain, such that for all x in the domain there exists a unique y in the co-domain such that (x, y) is in the relation.

Given:

$$
A \times B=\{(a, 0),(a, 1),(a, 2),(b, 0),(b, 1),(b, 2),(c, 0),(c, 1),(c, 2)\}
$$

But, the relation:

$$
\mathcal{S}=\{(a, 1),(b, 2),(c, 0)\}
$$

is a function

Visualizing Functions

Visualizing Functions

Visualizing Functions

1-1 \& onto

$1-1$

Domain Co-Domain

onto

Visualizing Functions

1-1 \& onto

Domain Co-Domain

onto

Domain Co-Domain

1-1

Review

Visualizing Functions

Domain Co-Domain

1-1

Domain Co-Domain

Domain Co-Domain

Not a function

Table of Contents

(1) Sets, Relations, and Functions
(2) Graph Theory
(3) Theorems and Proofs
4) Next Class

Graphs

Graphs

－Vertex Set：

$$
V=\{A, B, C, D\}
$$

Graphs

- Vertex Set:

- Edge Set:

$$
E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}
$$

Graphs

- Vertex Set:

$$
V=\{A, B, C, D\}
$$

- Edge Set:

$$
E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}
$$

- Edge Set:

$$
E=\{(A, A),(A, B),(A, D),(B, B),(B, D),(C, D)\}
$$

Graphs

- Vertex Set:

$$
V=\{A, B, C, D\}
$$

- Edge Set:

$$
E=\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}\right\}
$$

- Edge Set:

$$
E=\{(A, A),(A, B),(A, D),(B, B),(B, D),(C, D)\}
$$

- Graph:

$$
\begin{aligned}
G= & (V, E) \\
= & (\{A, B, C, D\} \\
& \quad\{(A, A),(A, B),(A, D),(B, B),(B, D),(C, D)\})
\end{aligned}
$$

Types of Graphs

Types of Graphs

Directed Graph

Types of Graphs

Bipartite Graph

Directed Graph

Types of Graphs

Directed Graph

Bipartite Graph

Complete Graph

Types of Graphs

Bipartite Graph

Complete Graph

Types of Graphs

Directed Graph

Bipartite Graph

Complete Graph

Binary Tree

Relations as Graphs

Relations as Graphs

Equivalence Relation?

Relations as Graphs

Equivalence Relation？

－Reflexive \checkmark

Relations as Graphs

Equivalence Relation?

- Reflexive \checkmark
- Symmetric \checkmark

Relations as Graphs

Equivalence Relation?

- Reflexive \checkmark
- Symmetric \checkmark
- Transitive \checkmark

Relations as Graphs

Equivalence Relation?

- Reflexive \checkmark
- Symmetric \checkmark
- Transitive \checkmark

Relations as Graphs

Equivalence Relation \checkmark

- Reflexive \checkmark
- Symmetric \checkmark
- Transitive \checkmark
- Equivalence Classes

$$
A=\{a, b, d\} \& C=\{c\}
$$

Table of Contents

(1) Sets, Relations, and Functions
(2) Graph Theory
(3) Theorems and Proofs
4) Next Class

Direct Proof

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Direct Proof

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof: Let A and B be sets and $x \in(A \cup B)^{c}$, thus $x \notin A \cup B$.

Direct Proof

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof: Let A and B be sets and $x \in(A \cup B)^{c}$, thus $x \notin A \cup B$. This means that $x \notin A$ and $x \notin B$, so that $x \in A^{c}$ and $x \in B^{c}$.

Direct Proof

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof: Let A and B be sets and $x \in(A \cup B)^{c}$, thus $x \notin A \cup B$. This means that $x \notin A$ and $x \notin B$, so that $x \in A^{c}$ and $x \in B^{c}$. By definition then, $x \in A^{c} \cap B^{c}$ and $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.

Direct Proof

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof: Let A and B be sets and $x \in(A \cup B)^{c}$, thus $x \notin A \cup B$. This means that $x \notin A$ and $x \notin B$, so that $x \in A^{c}$ and $x \in B^{c}$. By definition then, $x \in A^{c} \cap B^{c}$ and $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.
Now suppose $x \in A^{c} \cap B^{c}$ or equivalently $x \in A^{c}$ and $x \in B^{c}$.

Direct Proof

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof: Let A and B be sets and $x \in(A \cup B)^{c}$, thus $x \notin A \cup B$. This means that $x \notin A$ and $x \notin B$, so that $x \in A^{c}$ and $x \in B^{c}$. By definition then, $x \in A^{c} \cap B^{c}$ and $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.
Now suppose $x \in A^{c} \cap B^{c}$ or equivalently $x \in A^{c}$ and $x \in B^{c}$. This tells us that $x \notin A$ and $x \notin B$ and thus $x \notin A \cup B$, i.e. $x \in(A \cup B)^{c}$.

Direct Proof

Theorem (De Morgan's Law)

Given two sets A and B, the complement of their union is equal to the intersection of their complements:

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Proof: Let A and B be sets and $x \in(A \cup B)^{c}$, thus $x \notin A \cup B$. This means that $x \notin A$ and $x \notin B$, so that $x \in A^{c}$ and $x \in B^{c}$. By definition then, $x \in A^{c} \cap B^{c}$ and $(A \cup B)^{c} \subseteq A^{c} \cap B^{c}$.
Now suppose $x \in A^{c} \cap B^{c}$ or equivalently $x \in A^{c}$ and $x \in B^{c}$. This tells us that $x \notin A$ and $x \notin B$ and thus $x \notin A \cup B$, i.e. $x \in(A \cup B)^{c}$. Therefore, $A^{c} \cap B^{c} \subseteq(A \cup B)^{c}$ and

$$
(A \cup B)^{c}=A^{c} \cap B^{c}
$$

as desired.

By Cases

Theorem

Given any integer n, either n^{2} or $n^{2}-1$ is divisible by four.

By Cases

Theorem

Given any integer n, either n^{2} or $n^{2}-1$ is divisible by four.
Proof: (Case 1) Let n be an even integer so that we may write $n=2 k$ for some unique k. Then

$$
n^{2}=4 k^{2}
$$

and n^{2} is divisible by four.

By Cases

Theorem

Given any integer n, either n^{2} or $n^{2}-1$ is divisible by four.
Proof: (Case 1) Let n be an even integer so that we may write $n=2 k$ for some unique k. Then

$$
n^{2}=4 k^{2}
$$

and n^{2} is divisible by four.
(Case2) Now, if n is an odd integer then we write $n=2 k+1$ for some unique k. Thus,

$$
n^{2}-1=4 k^{2}+4 k+1-1=4\left(k^{2}+k\right)
$$

and $n^{2}-1$ is divisible by four.

By Cases

Theorem

Given any integer n, either n^{2} or $n^{2}-1$ is divisible by four.
Proof: (Case 1) Let n be an even integer so that we may write $n=2 k$ for some unique k. Then

$$
n^{2}=4 k^{2}
$$

and n^{2} is divisible by four.
(Case2) Now, if n is an odd integer then we write $n=2 k+1$ for some unique k. Thus,

$$
n^{2}-1=4 k^{2}+4 k+1-1=4\left(k^{2}+k\right)
$$

and $n^{2}-1$ is divisible by four.
Therefore, for any integer n we have shown that either n^{2} or $n^{2}-1$ is divisible by four.

Contrapositive

Theorem
 If n^{2} is even, then n is even.

Contrapositive

Theorem
 If n^{2} is even, then n is even.

Proof: Suppose that n is odd and is written $n=2 k+1$ for some unique k.

Contrapositive

Theorem

If n^{2} is even, then n is even.
Proof: Suppose that n is odd and is written $n=2 k+1$ for some unique k. Then we can write

$$
n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1
$$

which is odd.

Contrapositive

Theorem

If n^{2} is even, then n is even.
Proof: Suppose that n is odd and is written $n=2 k+1$ for some unique k. Then we can write

$$
n^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1
$$

which is odd. Therefore, if n is odd, then n^{2} is odd and so if n^{2} is even, then n is even.

Contradiction

Theorem
 No integer is both even and odd.

Contradiction

Theorem

No integer is both even and odd.
Proof: Suppose that n is both even and odd so that $n=2 k$ and $n=2 l+1$ for some unique k and l.

Contradiction

Theorem

No integer is both even and odd.
Proof: Suppose that n is both even and odd so that $n=2 k$ and $n=2 I+1$ for some unique k and I. Then we can write $2 k=2 l+1$ and $1=2(k-l)$.

Contradiction

Theorem

No integer is both even and odd.
Proof: Suppose that n is both even and odd so that $n=2 k$ and $n=2 l+1$ for some unique k and I. Then we can write $2 k=2 I+1$ and $1=2(k-I)$. If $k-I=0$, then $1=0$ and if $k-I \neq 0$, then 2 divides 1 .

Contradiction

Theorem

No integer is both even and odd.
Proof: Suppose that n is both even and odd so that $n=2 k$ and $n=2 l+1$ for some unique k and I. Then we can write $2 k=2 I+1$ and $1=2(k-l)$. If $k-I=0$, then $1=0$ and if $k-I \neq 0$, then 2 divides 1 . In either case we derive a contradiction and therefore no integer is both even and odd.

Induction

Theorem

Any tree with n vertices has $n-1$ edges.

Induction

Theorem
 Any tree with n vertices has $n-1$ edges.

(Base Case) When there is only one vertex there are no edges since trees do not contain loops and there is not a second vertex to connect to.

Induction

Theorem

Any tree with n vertices has $n-1$ edges.
(Induction Step) Assume that the theorem is true for some $k \geq 2$ and
 consider a tree with $k+1 \geq 3$ vertices.

Induction

Theorem
 Any tree with n vertices has $n-1$ edges.

(Induction Step) Assume that the theorem is true for some $k \geq 2$ and
 consider a tree with $k+1 \geq 3$ vertices. Since there are at least two vertices the tree must contain at least one leaf.

Induction

Theorem

Any tree with n vertices has $n-1$ edges.
(Induction Step) Assume that the theorem is true for some $k \geq 2$ and consider a tree with $k+1 \geq 3$ vertices. Since there are at least two vertices the tree must contain at least one leaf. Removing the leaf removes one vertex and one edge; we now have a subtree with k vertices and, by induction, $k-1$ edges.

Induction

Theorem

Any tree with n vertices has $n-1$ edges.

(Induction Step) Assume that the theorem is true for some $k \geq 2$ and consider a tree with $k+1 \geq 3$ vertices. Since there are at least two vertices the tree must contain at least one leaf. Removing the leaf removes one vertex and one edge; we now have a subtree with k vertices and, by induction, $k-1$ edges. Thus the original tree has $k+1$ vertices and k edges.

Table of Contents

(1) Sets, Relations, and Functions
(2) Graph Theory
(3) Theorems and Proofs
4) Next Class
三

Next Class

- Deterministic and Non-Deterministic Finite State Automata

Discrete Math Review

Dr. Chuck Rocca

roccac@wcsu.edu
http://sites.wcsu.edu/roccac

WESTERN CONNECTICUT
STATE UNIVERSITY
MACRICOSTAS SCHOOL OF ARTS 8 SCIENCES

