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1 Introduction and Directions

In this packet you will review/explore the concepts of equivalence relations and classes. In particular
you will see how, using equivalence classes, we can create new structures from old ones. You will
also spend time practicing some hopefully familiar skills including modular arithmetic, polynomial
arithmetic, proof reading, and proof writing.

You should write answer to the questions for this packet directly in the space provided. Your
work must be neat and legible, so, if you need to, complete it on scrap paper first. The material in
the first two sections should be somewhat familiar. The third section is very new but will help you
to see how well you understand the concept of equivalence relations and classes.



2 Dr. Chuck Rocca

2 Integers Modulo n

Some Definitions

Definition 1 (Divisibility). We say that an integer b divides an integer a, written b|a, if
and only if there exists a unique integer q, called the quotient, such that a = qb.

Exercises 1. For each pair decide if b divides a, b|a, or b doesn’t divide a, b ̸ |a:

1. 5|60 since 60 = 12(5) "

2. 5 ̸ |63 since 12(5) < 63 < 13(5) %

3. 4 7 since

4. 4 16 since

5. −3 24 since

6. 5 − 17 since

7. 12 4 since

8. −2 20 since

Definition 2 (Integers Mod n). Given n ∈ N and a, b ∈ Z we say that a is equivalent to
b modulo n, written a ≡ b (mod n), if and only if n|(a− b).

Exercises 2. For the given a, b, n ∈ Z decide if a ≡ b (mod n):

1. 12 ≡ 33 (mod 7) since 7|(12− 33) "

2. 45 ̸≡ 13 (mod 7) since 7 ̸ |(45− 13) %

3. 4 7 (mod 5) since

4. 4 7 (mod 3) since

5. 4 19 (mod 5) since

6. 73 25 (mod 12) since

7. 17 54 (mod 7) since

8. 75 9 (mod 6) since

For this packet, we will take the following theorem (the Division Algorithm) and its immediate
corollary as given. These give a way of talking more generally about what happens when one integer
divides another.

Theorem 1 (Division Algorithm). Given a, b ∈ Z with b ̸= 0 there exists unique integers q
and r, called the quotient and remainder, such that a = qb+ r and 0 ≤ r < |b|.
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Corollary. Given a, n ∈ Z with n > 0, we can write a − r = qn or a ≡ r (mod n) for a
unique 0 ≤ r < n.

Exercises 3. For the given a, n ∈ Z, n > 0, find r such that a ≡ r (mod n) and 0 ≤ r < n:

1. Given a = 27 and n = 11,

r = 5 = 27− 2(11) "

2. Given a = −13 and n = 11,

r = 8 = −13 + 2(11) "

3. Given a = 47 and n = 5,

4. Given a = 33 and n = 9,

5. Given a = 14 and n = 3,

6. Given a = −37 and n = 13,

7. Given a = −2 and n = 7,

8. Given a = 24 and n = 5,

Reflexive

Definition 3 (Reflexive). A relation between a set and its self, A ∼ A, is reflexive if and
only if for all a ∈ A, a ∼ a.

Lemma 2. The modular equivalence from definition 2 is a reflexive relation.

Proof. Let a, n ∈ Z and assume that n > 0. Note that

n(0) = 0 = a− a

so that n|a− a.
(1)

Therefore, a ≡ a (mod n)
(2)

and modular equivalence is reflexive.

Justify each of the labeled details in the above proof.

(1)

(2)
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Symmetric

Definition 4 (Symmetric). A relation between a set and its self, A ∼ A, is symmetric if
and only if for all a, b ∈ A, a ∼ b implies b ∼ a.

Lemma 3. The modular equivalence from definition 2 is a symmetric relation.

Proof. Let a, b, n ∈ Z, assume that n > 0 and a ≡ b (mod n). We know then that n|(a− b),
(3)

a − b = qn,
(4)

and b − a = −qn.
(5)

Therefore, b ≡ a (mod n)
(6)

and, thus, modular
equivalence is symmetric.

Justify each of the labeled details in the above proof.

(3)

(4)

(5)

(6)
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Transitive

Definition 5 (Transitive). A relation between a set and its self, A ∼ A, is transitive if and
only if for all a, b, c ∈ A, a ∼ b and b ∼ c implies a ∼ c.

Lemma 4. The modular equivalence from definition 2 is a transitive relation.

Proof. Let a, b, c, n ∈ Z, assume that n > 0, a ≡ b (mod n), and b ≡ c (mod n). Then we
may write

a− c = (a− b) + (b− c)(7)

= q0n+ q1n
(8)

= (q0 + q1)n

for some unique q0 and q1. This means n|(a − c)
(9)

and a ≡ c (mod n).
(10)

Therefore we
have that modular equivalence is transitive.

Justify each of the labeled details in the above proof.

(7)

(8)

(9)

(10)



6 Dr. Chuck Rocca

Equivalence Relations and Classes

Definition 6 (Equivalence Relation). A relation between a set and its self, A ∼ A, is an
equivalence relation if and only if it is reflexive, symmetric, and transitive.

Thus from the previous lemmas 2, 3, & 4 we conclude that modular equivalence is an equiv-
alence relation.

Definition 7 (Equivalence Classes). Given an equivalence relation between a set and its self,
A ∼ A, and given a ∈ A, the equivalnce class of a is the set

[a] = {x ∈ A|x ∼ a} .

Theorem 1 together with corollary 2 ensures that given a positive integer n every integer a is
equivalent to a unique remainder 0 ≤ r < n. These remainders will be our equivalence class
representatives, i.e. for all a ∈ Z we have a ∈ [r] for some remainder r.

Exercises 4. For each pair a and n give the appropriate equivalence class representative r for a
(mod n).

1. Given a = 18 and n = 7

r = 4 = 18− 2(7)"

2. Given a = 37 and n = 5

r = 2 = 37− 7(5)"

3. Given a = −10 and n = 13

r =

4. Given a = −17 and n = 10

r =

5. Given a = 32 and n = 3

r =

6. Given a = −42 and n = 42

r =

7. Given a = 11 and n = 9

r =

8. Given a = −8 and n = 11

r =
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Operations

Definition 8 (Closed & Binary Operation). A set A is said to be closed under a binary
operation ∗ if and only if ∗ is a function from A×A to A. Normally we would write this as

∀a, b ∈ A : a ∗ b ∈ A.

Exercises 5. For each set and each function decide if we have a closed binary operation.

1. Set A = Z and operation (a, b) 7→ a+ b:

The sum of two integers is an integer; this is a closed binary operation. "

2. Set A = Z and operation a 7→ 2a:

This is not a binary operation; there is only one input. %

3. Set A = N and operation (a, b) 7→ a− b:

Since 1− 2 = −1 ̸∈ N, this is not closed. %

4. Set A = Z and operation (a, b) 7→ a× b:

The product of two integers is an integer; this is a closed binary operation. "

5. Set A = Z and operation (a, b) 7→ a÷ b:

6. Set A = Z and operation (a, b) 7→ ab:

7. Set A = N and operation (a, b) 7→ ab:

8. Set A = Q and operation (a, b) 7→ a/(b2 + 1):
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Definition 9 (Operation Respecting). We say that a relation, ∼, respects a binary op-
eration, ∗, if and only if (a ∼ b) and (c ∼ d) implies (a ∗ c ∼ b ∗ d).

Theorem 5 (Modular Arithmetic). The modular equivalence relation from definition 2 re-
spects the operations of addition, subtraction, and multiplication, i.e. given a, b, c, d, n ∈ Z
with n > 0 if a ≡ b (mod n) and c ≡ d (mod n), then

• a+ c ≡ b+ d (mod n)

• a− c ≡ b− d (mod n)

• a× c ≡ b× d (mod n)

Proof. Fill in the details in the following two-column proof.

Claim Justification

a, b, c, d, n ∈ Z, n > 0

a ≡ b (mod n), c ≡ d (mod n)

a− b = q0n, c− d = q1n

(a± c)− (b± d) = (a− b)± (c− d)

(a− b)± (c− d) = q0n± q1n = (q0 ± q1)n

∴ (a± c) ≡ (b± d) (mod n)

(ac)− (bd) = (ac− bc+ bc− bd)

(ac− bc+ bc− bd) = c(a− b) + b(c− d)

c(a− b) + b(c− d) = Qn

∴ (a× c) ≡ (b× d) (mod n)
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Rewrite the proof as a paragraph proof using proper conventions for English and for mathematical
writing.

(Take Two). Assume that a, b, c, d, n ∈ Z, n > 0, a ≡ b (mod n), and c ≡ d (mod n).

Therefore modular equivalence (definition 2) is an equivalence relation (lemmas 2, 3, and 4) and
respects the usual binary operations under which integers are closed (theorem 5).
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3 Division and Polynomials

Familiar But New Definitions

Definition 10 (Polynomials over the Rationals). A polynomial over the rationals is an
expression of the form

a0 + a1x+ a2x
2 + · · ·+ aix

i + · · ·+ anx
n

where x is an arbitrary symbol and for all i, i ∈ N and ai ∈ Q. The set of all such polynomials
is denoted Q[x].

Definition 11 (Degree of a Polynomial). Given a polynomial f(x) ∈ Q[x], the degree of
the polynomial is the highest power of x in f(x) when f(x) is non-zero. If f(x) = a0 ∈ Q
we say the degree is 0 and if f(x) = 0, then we say f(x) has no degree. The degree of a
polynomial is written deg(f).

Note that for a given polynomial f(x) ∈ Q[x]

f(x) = a0 + a1x+ a2x
2 + · · ·+ aix

i + · · ·+ anx
n

the the ai are coefficients, an, when deg(f) = n, is the leading coefficient, and a0 is the
constant term.

Exercises 6. For each polynomial, identify if it is in Q[x] and if it is find its constant term, degree,
and leading coefficient.

Polynomial In Q[x]? a0 deg(f) an

17x2 + 3x+ 9 " 9 2 17

πx5 − 3x17 − 32 % N/A N/A N/A

−25x5 − x4 − 13x− 2

17x−3 + x5 + 5x

5x5 − x42 +
√
2x2 − 4

13 + x− 12x2 − 47x9

5x5 − x42 + 17x2 − 4

72− 3x+ 12x−3 − 5x7
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As with integers we can define concepts of divisibility and division for polynomials.

Definition 12 (Divisibility). We say that a polynomial b(x) divides a polynomial a(x),
written b(x)|a(x), if and only if there exists a unique polynomial q(x), called the quotient,
such that a(x) = q(x)b(x).

Theorem 6 (Division Algorithm). Given a(x), b(x) ∈ Q[x] with b(x) ̸= 0 there exists unique
polynomials q(x) and r(x), called the quotient and remainder, such that a(x) = q(x)b(x)+r(x)
and r(x) = 0 or 0 ≤ deg(r) < deg(b).

Exercises 7. For each pair a(x), b(x) ∈ Q[x] identify q(x) and r(x) as in theorem 6 such that

a(x) = q(x)b(x) + r(x)

and indicate if b(x)|a(x) as in definition 12.

1. Given a(x) = x2 + 3x+ 2 and b(x) = x− 1

a(x) = (x+ 4)b(x) + 6

and b(x) ̸ |a(x).

2. Given a(x) = x2 + 3x+ 2 and b(x) = x+ 1

a(x) = (x+ 2)b(x) + 0

and b(x)|a(x).

3. Given a(x) = 25x2 + 2x+ 5 and b(x) = 5x+ 1

4. Given a(x) = x2 − 5x+ 7 and b(x) = x2 + 1

5. Given a(x) = x3 − 7x+ 6 and b(x) = 2x+ 1

6. Given a(x) = x3 − 4x2 + 5x− 2 and b(x) = x− 2
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Corollary (Remainder Theorem). Given f(x) ∈ Q[x] and a ∈ Q, if f(x) = (x− a)q(x) + r,
then f(a) = r ∈ Q.

Corollary (Factor Theorem). Given f(x) ∈ Q[x] and a ∈ Q, f(a) = 0 if and only if
f(x) = (x− a)g(x) and g(x) ∈ Q[x].

An Equivalence Relation

Definition 13 (Polynomials Mod n(x)). Given a(x), b(x), n(x) ∈ Q[x] with deg(n) ≥ 0, we
say that a(x) is equivalent to b(x) modulo n(x), written a(x) ≡ b(x) (mod n(x)), if and
only if n(x)|(a(x)− b(x)).

Theorem 7. Polynomial modular equivalence is an equivalence relation.

Proof. Let a(x), b(x), c(x), n(x) ∈ Q[x] with deg(n) ≥ 0. Since

(n(x))0 = 0 = a(x)− a(x),

the relation is reflexive.
(11)

Next, assuming a(x) ≡ b(x) (mod n(x)),

a(x)− b(x) = q(x)n(x)

and
b(x)− a(x) = −q(x)n(x)

for some q(x) ∈ Q[x]
(12)

, therefore the relation is symmetric.
(13)

Finally, if we additionally
assume b(x) ≡ c(x) (mod n(x)), then

a(x)− c(x) = a(x)− b(x) + b(x)− c(x) = q(x)n(x)

for some q(x) ∈ Q[x]
(14)

and a(x) ≡ c(x) (mod n(x)); the relation is transitive.
(15)
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Exercises 8. Fill in justifications for each of the numbered items in the previous proof.

(11)

(12)

(13)

(14)

(15)
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As with integers, we can define a standard set of equivalence class representatives by using the
remainders defined by the Division Algorithm for Polynomials (theorem 6).

Exercises 9. Find the equivalence class representative for each a(x) below using n(x) = x2 + 1.

1. Given a(x) = x3 + 2 we find that r(x) = 2− x. "

2. Given a(x) = x3 − x2 + x+ 6 we find that r(x) = 7. "

3. Given a(x) = x2 + x− 8 we find that r(x) = x− 9. "

4. Given a(x) = x4 + 2x2 we find that r(x) =

5. Given a(x) = x5 − 7 we find that r(x) =

6. Given a(x) = x2 + 2 we find that r(x) =

7. Given a(x) = x4 + 3x2 + 2 we find that r(x) =



Exploring Equivalence Relations v 0.2 15

Operations

Theorem 8 (Arithmetic Mod n(x)). Polynomial modular equivalence (definition 13) respects
the operations of polynomial addition, subtraction, and multiplication.

Following theorem 5, write a two-column proof of theorem 8, then translate it to a paragraph proof.

(Two-column proof).

Claim Justification
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(Paragraph Proof). Assume a, b, c, d, n ∈ Q[x], deg(n) ≥ 0, a(x) ≡ b(x) (mod n(x)), and
c(x) ≡ d(x) (mod n).
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4 A Trick with Natural Numbers

A New Relation

Definition 14. Given (a, b), (c, d) ∈ N × N we will say that (a, b) ∼ (c, d) if and only if
a+ d = c+ b in N.

Example 1. Consider the following examples:

1. (2, 3) ∼ (5, 6) since 2 + 6 = 5 + 3 "

2. (17, 10) ∼ (8, 1) since 17 + 1 = 8 + 10 "

3. (5, 5) ∼ (1, 1) since 5 + 1 = 1 + 5 "

4. (7, 4) ̸∼ (4, 7) since 7 + 7 ̸= 4 + 4 %

5. (7, 2) ∼ (12, 7) since 7 + 7 = 12 + 2 "

6. (3, 2) ̸∼ (9, 10) since 3 + 10 ̸= 9 + 1 %

Exercises 10. Identify which pairs relate, (a, b) ∼ (c, d), and which do not, (a, b) ̸∼ (c, d):

1. (4, 5) (17, 18) since

2. (7, 3) (12, 16) since

3. (7, 1) (9, 3) since

4. (2, 7) (1, 6) since

5. (3, 4) (9, 8) since

6. (3, 3) (7, 7) since

Remark (Comment on Subtraction). Given (a, b), (c, d) ∈ N × N if (a, b) ∼ (c, d), then by
definition 14

a+ d = c+ d

which is equivalent to
a− b = c− d, (1)

however we don’t usually use this because subtraction isn’t well defined for N. (16)
In what

follows it will sometimes be helpful to use equation 1 even though it is not well defined in N.
When ever possible you should seek to avoid this. (Note: Theorem 11 is really the only place
this is needed.)

Exercises 11. Why is it the case that “subtraction isn’t well defined for N,” as stated in the
previous remark?
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Lemma 9. Given n, k ∈ N the following pairs are always related:

1. (n+ k, n) ∼ (k + 1, 1),

2. (n, n+ k) ∼ (1, k + 1), and

3. (n, n) ∼ (1, 1).

Proof. Let n, k ∈ N be arbitrary. Then
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An Equivalence Relation

Theorem 10. The relation defined on N× N in definition 14 is an equivalence relation.

Proof. We can show that the theorem is true by showing the relation is reflexive, symmetric
and transitive.

• Reflexive:

• Symmetric:

• Transitive:

Definition 15. Using the relation defined in definition 14, let

(N× N)/ ∼= {[(a, b)]|(a, b) ∈ N× N}

be the set of all equivalence classes of ordered pairs; i.e.

[(a, b)] = {(c, d)|(c, d) ∼ (a, b)} .



20 Dr. Chuck Rocca

Operations

Definition 16 (Addition). Given (a, b), (c, d) ∈ N× N define addition by

(a, b) + (c, d) = (a+ c, b+ d).

Exercises 12. Sum the pairs using the rule (a, b) + (c, d) = (a+ c, b+ d) and then reduce them to
the form (1, n), (n, 1), or (1, 1) (see lemma 9 above):

1. (4, 5) + (7, 8)= (11,13) ∼ (1,3)

2. (3, 3) + (11, 9)= (14,12) ∼ (3,1)

3. (7, 1) + (5, 5)

4. (9, 9) + (3, 1)

5. (10, 5) + (5, 10)

6. (1, 6) + (6, 1)

7. (3, 1) + (9, 10)

8. (8, 8) + (10, 9)

Definition 17 (Multiplication). Given (a, b), (c, d) ∈ N× N define multiplication by

(a, b)× (c, d) = (ac+ bd, ad+ bc).

Exercises 13. Multiply the pairs using the rule (a, b)× (c, d) = (ac+ bd, ad+ bc) and then reduce
them to the form (1, n), (n, 1), or (1, 1) (see lemma 9 above):

1. (1, 2)× (3, 7)= (17,13) ∼ (5,1)

2. (2, 1)× (4, 2)= (10,8) ∼ (3,1)

3. (1, 1)× (1, 8)

4. (5, 4)× (4, 5)

5. (7, 1)× (5, 6)

6. (7, 1)× (6, 5)

7. (3, 1)× (3, 1)

8. (5, 7)× (5, 7)
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Theorem 11 (Respecting Operations). Let (a, b), (c, d), (a1, b1), (c1, d1) ∈ N×N and assume

(a, b) ∼ (a1, b1) and (c, d) ∼ (c1, d1),

then with addition and multiplication defined as in definitions 16 and 17,

(a, b) + (c, d) ∼ (a1, b1) + (c1, d1)

and
(a, b)× (c, d) ∼ (a1, b1)× (c1, d1).

Proof. Let (a, b), (c, d), (a1, b1), (c1, d1) ∈ N× N and assume

(a, b) ∼ (a1, b1) and (c, d) ∼ (c1, d1).

This means that
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Lemma 12. Using the relation in definition 14 and the operations from definitions 16 and
17, for all a, b, n ∈ N we have that

1. ((a, b) + (n, n)) ∼ (a, b), (Additive Identity)

2. ((a, b) + (b, a)) ∼ (n, n), (Additive Inverse)

3. ((a, b)× (n, n)) ∼ (n, n), (Zero)

4. ((a, b)× (n+ 1, n)) ∼ (a, b), (Multiplicative Identity) and

5. ((a, b)× (n, n+ 1)) ∼ (b, a). (Negatives)

Proof. Let a, b, n ∈ N.

1. Simplifying (a, b) + (n, n) we get

and so (n, n) is the additive identity.

2. Simplifying (a, b) + (b, a) we get

and so (a, b) and (b, a) additive inverses.

3. Simplifying (a, b)× (n, n) we get

and so (n, n) acts like zero.

4. Simplifying (a, b)× (n+ 1, n) we get

and so (n+ 1, 1) is the multiplicative identity.

5. Simplifying (a, b)× (n, n+ 1) we get

and so (1, n+ 1) acts like negative one.
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Corollary. The set N×N together with the relation in definition 14 and the operations from
definitions 16 and 17 is equivalent to the integers Z.

Justify corollary 4 by defining a map

ϕ : (N× N)/ ∼−→ Z :

• ϕ((1, 1)) =

• ϕ((2, 1)) =

• ϕ((1, 2)) =

• ϕ((n, 1)) =

• ϕ((1, n)) =
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