Definition 1. Given $a, b \in \mathbb{Z}$, we say that b divides a if there exists an unique $q \in \mathbb{Z}$, called the quotient, such that a = qb. When b divides a we write b|a.

Examples & Non-Examples:

1. 5 60 since $60 = 12(5)$	5324 since
2. 5 /63 since $12(5) < 63 < 13(5)$ ×	6. 5 17 since
3. 47 since	7. 124 since
4. 416 since	8220 since

Lemma 1. Given integers a, b, and c with $c \neq 0$, if c|a and c|b, then c|a+b.

Examples:

Non-Examples:

Proof. Let $a, b, c \in \mathbb{Z}$, assume $c \neq 0$, c|a and c|b so there exists $q_a, q_b \in \mathbb{Z}$ with $a = q_a c$ and $b = q_b c$.⁽¹⁾ Then we can write:

$$a+b = q_a c + q_b c^{(2)} \tag{1}$$

$$= (q_a + q_b)c^{(\mathbf{3})}.$$
 (2)

So, (a + b) = qc, where $q = q_a + q_b$. Now, if $(a + b) = q_1c = q_2c$, then $q_1 = q_2$.⁽⁴⁾ Therefore, we may conclude c|(a + b).

Detail Explanations:

Possible Extensions:

Conjecture (Product Divisibility Conjecture). Given $a, b, c \in \mathbb{Z}$, if $c \neq 0$ and c|ab, then c|a or c|b.

Definition 2. A base *b* place value number system is a method of representing numbers as a string of symbols where the symbols in a given position, or place, can represent the numbers 0 through (b-1) and each place corresponds to a particular power of *b*. Notationally we will write a number in such a system as

$$(a_k a_{k-1} a_{k-2} \ldots a_0)_b$$

where a_i is the symbol or collection of symbols representing the number of copies of b^i which are needed in order to represent the number.

Examples:

1. Base 10: $123 = (1, 2, 3)_{10}$ represents 1 copy of 10^2 , 2 copies of 10^1 , and 3 copies of 10^0 . In base 13 this would be

$$(9,6)_{13} = 9 \times 13^1 + 6 \times 13^0.$$

2. Base 2: $(1, 0, 0, 1)_2$ represents 1 copy of 2^3 , 0 copies of 2^2 and 2^1 , and 1 copy of 2^0 . In base 10 this is

$$2^3 + 2^0 = 8 + 1 = 9.$$

3. Base 16: $(10, 15, 4, 11)_{16}$ represents 10 copies of 16^3 , 15 copies of 16^2 , 4 copies of 16^1 , and 11 copies of 16^0 . In base 10 this is

 $10 \times 16^3 + 15 \times 16^2 + 4 \times 16^1 + 11 \times 16^0 = 44875.$

4. Base 13: $(7, 3, 10)_{13}$ represents

In base 10 this is

5. Base 8: $(4, 7, 1)_8$ represents

In base 10 this is

6. Base 10: 36 represents

In base 7 this is

7. Base 10: 100 represents

In base 11 this is

Theorem 2 (Divisibility by b - 1). In a base b place value number system, a number is divisible by (b - 1) if the sum of its symbols is divisible by (b - 1).

Examples:

Non-Examples:

There are multiple ways to prove theorem 2; here we will use the **Binomial Theorem**.

Theorem 3 (Binomial Theorem). Given arbitrary $a, b \in \mathbb{R}$ and exponent n, we may write:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k,$$

assuming (a + b) and n are not both 0.

Examples

1. $(x+2)^2 =$

2.
$$(b+1)^3 =$$

3. $(y-1)^4 =$

4.
$$11^5 = (10+1)^5 =$$

5. $6^7 = (7-1)^7 =$

Proof. Let $(a_k a_{k-1} a_{k-2} \dots a_0)_b$ be a number in a base b number system. We may write this number as the sum

$$\sum_{i=0}^{k} a_i \, b^i. \, {}^{(6)}$$

Applying the *Binomial Theorem*, we can write b^i as

$$b^{i} = ((b-1)+1)^{i} = \sum_{l=0}^{i} {\binom{i}{l}} (b-1)^{i-l} 1^{l} = Q_{i}(b-1)+1,$$
(3)

for an appropriate value of Q_i .⁽⁷⁾ Using this we may write:

$$\sum_{i=0}^{k} a_i \left(Q_i(b-1) + 1 \right) = \sum_{i=0}^{k} a_i Q_i(b-1) + a_i^{(8)}$$
(4)

$$=\sum_{i=0}^{k} a_{i} Q_{i}(b-1) + \sum_{i=0}^{k} a_{i}^{(9)}$$
(5)

$$= (b-1) \sum_{i=0}^{\kappa} a_i Q_i + \sum_{i=0}^{\kappa} a_i.$$
 (6)

Since the first term in the expression on line (6) is a multiple of (b-1) we may conclude that the entire expression is divisible by (b-1) if and only if (b-1) divides $\sum_{i=0}^{k} a_i$, which is what we wished to prove.

Detail Explanations:

Possible Extensions:

Conjecture (Reverse Order Conjecture). In a base *b* place value number system twice the number (b-1) is written with the same symbols as $(b-1)^2$, only the symbols are in the opposite order.