Definition 1. Given $a, b \in \mathbb{Z}$, we say that b divides a if there exists an unique $q \in \mathbb{Z}$, called the quotient, such that $a=q b$. When b divides a we write $b \mid a$.

Examples EJ Non-Examples:

1. $5 \mid 60$ since $60=12(5) \boldsymbol{V}$
2. $-3 _24$ since \qquad
3. $5 \nmid 63$ since $12(5)<63<13(5) X$
4. $5-17$ since \qquad
5. $4 _\quad 7$ since \qquad 7. $12 _4$ since \qquad
6. $4 _16$ since \qquad 8. $-2 _20$ since \qquad

Lemma 1. Given integers a, b, and c with $c \neq 0$, if $c \mid a$ and $c \mid b$, then $c \mid a+b$.

Examples:

Non-Examples:

Proof. Let $a, b, c \in \mathbb{Z}$, assume $c \neq 0, c \mid a$ and $c \mid b$ so there exists $q_{a}, q_{b} \in \mathbb{Z}$ with $a=q_{a} c$ and $b=q_{b} c .{ }^{(1)}$ Then we can write:

$$
\begin{align*}
a+b & =q_{a} c+q_{b} c^{(\mathbf{2})} \tag{1}\\
& =\left(q_{a}+q_{b}\right) c^{(\mathbf{3})} \tag{2}
\end{align*}
$$

So, $(a+b)=q c$, where $q=q_{a}+q_{b}$. Now, if $(a+b)=q_{1} c=q_{2} c$, then $q_{1}=q_{2}$. ${ }^{(4)}$ Therefore, we may conclude $c \mid(a+b) .{ }^{(5)}$

Detail Explanations:

Possible Extensions:

Conjecture (Product Divisibility Conjecture). Given $a, b, c \in \mathbb{Z}$, if $c \neq 0$ and $c \mid a b$, then $c \mid a$ or $c \mid b$.

Definition 2. A base b place value number system is a method of representing numbers as a string of symbols where the symbols in a given position, or place, can represent the numbers 0 through $(b-1)$ and each place corresponds to a particular power of b. Notationally we will write a number in such a system as

$$
\left(a_{k} a_{k-1} a_{k-2} \ldots a_{0}\right)_{b}
$$

where a_{i} is the symbol or collection of symbols representing the number of copies of b^{i} which are needed in order to represent the number.

Examples:

1. Base 10: $123=(1,2,3)_{10}$ represents 1 copy of $10^{2}, 2$ copies of 10^{1}, and 3 copies of 10^{0}. In base 13 this would be

$$
(9,6)_{13}=9 \times 13^{1}+6 \times 13^{0} .
$$

2. Base $2:(1,0,0,1)_{2}$ represents 1 copy of $2^{3}, 0$ copies of 2^{2} and 2^{1}, and 1 copy of 2^{0}. In base 10 this is

$$
2^{3}+2^{0}=8+1=9
$$

3. Base 16: $(10,15,4,11)_{16}$ represents 10 copies of $16^{3}, 15$ copies of $16^{2}, 4$ copies of 16^{1}, and 11 copies of 16^{0}. In base 10 this is

$$
10 \times 16^{3}+15 \times 16^{2}+4 \times 16^{1}+11 \times 16^{0}=44875
$$

4. Base 13: $(7,3,10)_{13}$ represents

In base 10 this is
5. Base 8: $(4,7,1)_{8}$ represents

In base 10 this is
6. Base 10: 36 represents

In base 7 this is
7. Base 10: 100 represents

In base 11 this is

Theorem 2 (Divisibility by $b-1$). In a base b place value number system, a number is divisible by $(b-1)$ if the sum of its symbols is divisible by $(b-1)$.

Examples:

Non-Examples:

There are multiple ways to prove theorem 2; here we will use the Binomial Theorem.

Theorem 3 (Binomial Theorem). Given arbitrary $a, b \in \mathbb{R}$ and exponent n, we may write:

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

assuming $(a+b)$ and n are not both 0 .

Examples

1. $(x+2)^{2}=$
2. $(b+1)^{3}=$
3. $(y-1)^{4}=$
4. $11^{5}=(10+1)^{5}=$
5. $6^{7}=(7-1)^{7}=$

Proof. Let $\left(a_{k} a_{k-1} a_{k-2} \ldots a_{0}\right)_{b}$ be a number in a base b number system. We may write this number as the sum

$$
\sum_{i=0}^{k} a_{i} b^{i}
$$

Applying the Binomial Theorem, we can write b^{i} as

$$
\begin{equation*}
b^{i}=((b-1)+1)^{i}=\sum_{l=0}^{i}\binom{i}{l}(b-1)^{i-l} 1^{l}=Q_{i}(b-1)+1 \tag{3}
\end{equation*}
$$

for an appropriate value of $Q_{i} .{ }^{(7)}$ Using this we may write:

$$
\begin{align*}
\sum_{i=0}^{k} a_{i}\left(Q_{i}(b-1)+1\right) & =\sum_{i=0}^{k} a_{i} Q_{i}(b-1)+a_{i}{ }^{(8)} \tag{4}\\
& =\sum_{i=0}^{k} a_{i} Q_{i}(b-1)+\sum_{i=0}^{k} a_{i}{ }^{(\mathbf{9})} \tag{5}\\
& =(b-1) \sum_{i=0}^{k} a_{i} Q_{i}+\sum_{i=0}^{k} a_{i} \tag{6}
\end{align*}
$$

Since the first term in the expression on line (6) is a multiple of $(b-1)$ we may conclude that the entire expression is divisible by $(b-1)$ if and only if $(b-1)$ divides $\sum_{i=0}^{k} a_{i}$, which is what we wished to prove.

Detail Explanations:

Possible Extensions:

Conjecture (Reverse Order Conjecture). In a base b place value number system twice the number $(b-1)$ is written with the same symbols as $(b-1)^{2}$, only the symbols are in the opposite order.

