Quotients and Homomorphisms

Dr. Chuck Rocca

```
WESTERN
CONNECTICUT
STATE UNIVERSITY
    MACRICOSTAS
    SCHOOL OF ARTS
        & SCIENCES
```


Table of Contents

(1) Cosets - Again

(2) Normal Subgroups
(3) Quotient Groups

4 First Isomorphism Theorem for Groups
(5) Quotient Structures

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $f r\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$
- $\left\langle r^{2}\right\rangle f=\left\{r^{2} f, r^{4} f, r^{6} f, f\right\}$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$r^{3} f$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
r^{3} f=r^{2}(r f)
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right)
\end{aligned}
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right) \\
& =r(r f) r^{n-1}
\end{aligned}
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right) \\
& =r(r f) r^{n-1} \\
& =r\left(f r^{-1}\right) r^{n-1}
\end{aligned}
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right) \\
& =r(r f) r^{n-1} \\
& =r\left(f r^{-1}\right) r^{n-1} \\
& =(r f) r^{n-2}
\end{aligned}
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right) \\
& =r(r f) r^{n-1} \\
& =r\left(f r^{-1}\right) r^{n-1} \\
& =(r f) r^{n-2} \\
& =\left(f r^{-1}\right) r^{n-2}
\end{aligned}
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right) \\
& =r(r f) r^{n-1} \\
& =r\left(f r^{-1}\right) r^{n-1} \\
& =(r f) r^{n-2} \\
& =\left(f r^{-1}\right) r^{n-2} \\
& =f r^{n-3}
\end{aligned}
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right) \\
& =r(r f) r^{n-1} \\
& =r\left(f r^{-1}\right) r^{n-1} \\
& =(r f) r^{n-2} \\
& =\left(f r^{-1}\right) r^{n-2} \\
& =f r^{n-3}
\end{aligned}
$$

$$
r^{k} f=f r^{-k}=f r^{n-k}
$$

Calculating in D_{n}

$$
D_{n}=\left\langle r, f \mid r^{n}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\begin{aligned}
r^{3} f & =r^{2}(r f) \\
& =r^{2}\left(f r^{-1}\right) \\
& =r(r f) r^{n-1} \\
& =r\left(f r^{-1}\right) r^{n-1} \\
& =(r f) r^{n-2} \\
& =\left(f r^{-1}\right) r^{n-2} \\
& =f r^{n-3}
\end{aligned}
$$

$$
r^{k} f=f r^{-k}=f r^{n-k}
$$

$$
f r^{k}=r^{-k} f=r^{n-k} f
$$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $f r\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$
- $\left\langle r^{2}\right\rangle f=\left\{r^{2} f, r^{4} f, r^{6} f, f\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$
- $\left\langle r^{2}\right\rangle f=\left\{f r^{6}, f r^{4}, f r^{2}, f\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$
- $\left\langle r^{2}\right\rangle f=\left\{f r^{6}, f r^{4}, f r^{2}, f\right\}$
- $\left\langle r^{2}\right\rangle r=\left\{r^{3}, r^{5}, r^{7}, r\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$
- $\left\langle r^{2}\right\rangle f=\left\{f r^{6}, f r^{4}, f r^{2}, f\right\}$
- $\left\langle r^{2}\right\rangle r=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $\left\langle r^{2}\right\rangle f r=\left\{r^{2} f r, r^{4} f r, r^{6} f r, f r\right\}$

$$
D_{8}=\left\langle r, f \mid r^{8}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$
- $\left\langle r^{2}\right\rangle f=\left\{f r^{6}, f r^{4}, f r^{2}, f\right\}$
- $\left\langle r^{2}\right\rangle r=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
- $\left\langle r^{2}\right\rangle f r=\left\{f r^{7}, f r^{5}, f r^{3}, f r\right\}$

$$
D_{8}=\left\langle r^{2}\right\rangle \cup f\left\langle r^{2}\right\rangle \cup r\left\langle r^{2}\right\rangle \cup f r\left\langle r^{2}\right\rangle
$$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

$$
\boldsymbol{\bullet}\langle f\rangle=\{f, e\}
$$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $r^{2}\langle f\rangle=\left\{r^{2} f, r^{2}\right\}$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $r^{2}\langle f\rangle=\left\{r^{2} f, r^{2}\right\}$
- $r^{3}\langle f\rangle=\left\{r^{3} f, r^{3}\right\}$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $r^{2}\langle f\rangle=\left\{r^{2} f, r^{2}\right\}$
- $r^{3}\langle f\rangle=\left\{r^{3} f, r^{3}\right\}$
- $\langle f\rangle r=\{f r, r\}=\left\{r^{3} f, r\right\}$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $r^{2}\langle f\rangle=\left\{r^{2} f, r^{2}\right\}$
- $r^{3}\langle f\rangle=\left\{r^{3} f, r^{3}\right\}$
- $\langle f\rangle r=\{f r, r\}=\left\{r^{3} f, r\right\}$
- $\langle f\rangle r^{2}=\left\{f r^{2}, r^{2}\right\}=\left\{r^{2} f, r^{2}\right\}$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $r^{2}\langle f\rangle=\left\{r^{2} f, r^{2}\right\}$
- $r^{3}\langle f\rangle=\left\{r^{3} f, r^{3}\right\}$
- $\langle f\rangle r=\{f r, r\}=\left\{r^{3} f, r\right\}$
- $\langle f\rangle r^{2}=\left\{f r^{2}, r^{2}\right\}=\left\{r^{2} f, r^{2}\right\}$
- $\langle f\rangle r^{3}=\left\{f r^{3}, r^{3}\right\}=\left\{r f, r^{3}\right\}$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $r^{2}\langle f\rangle=\left\{r^{2} f, r^{2}\right\}$
- $r^{3}\langle f\rangle=\left\{r^{3} f, r^{3}\right\}$
- $\langle f\rangle r=\{f r, r\}=\left\{r^{3} f, r\right\}$
- $\langle f\rangle r^{2}=\left\{f r^{2}, r^{2}\right\}=\left\{r^{2} f, r^{2}\right\}$
- $\langle f\rangle r^{3}=\left\{f r^{3}, r^{3}\right\}=\left\{r f, r^{3}\right\}$
- $\exists g \in D_{4}: g\langle f\rangle \neq\langle f\rangle g$

$$
D_{4}=\left\langle r, f \mid r^{4}=f^{2}=e, r f=f r^{-1}\right\rangle
$$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $r^{2}\langle f\rangle=\left\{r^{2} f, r^{2}\right\}$
- $r^{3}\langle f\rangle=\left\{r^{3} f, r^{3}\right\}$
- $\langle f\rangle r=\{f r, r\}=\left\{r^{3} f, r\right\}$
- $\langle f\rangle r^{2}=\left\{f r^{2}, r^{2}\right\}=\left\{r^{2} f, r^{2}\right\}$
- $\langle f\rangle r^{3}=\left\{f r^{3}, r^{3}\right\}=\left\{r f, r^{3}\right\}$
- $\exists g \in D_{4}: g\langle f\rangle \neq\langle f\rangle g$

$$
D_{4}=\langle f\rangle \cup r\langle f\rangle \cup r^{2}\langle f\rangle \cup r^{3}\langle f\rangle
$$

Definition of Cosets

Definition (Coset)

Given a group G, subgroup H, and element $g \in G$,

$$
g H=\{g h \mid h \in H\}
$$

is a left coset of H and

$$
H g=\{h g \mid h \in H\}
$$

is a right coset of H.

Definition of Cosets

Definition (Coset)

Given a group G, subgroup H, and element $g \in G$,

$$
g H=\{g h \mid h \in H\}
$$

is a left coset of H and

$$
H g=\{h g \mid h \in H\}
$$

is a right coset of H.

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all $g \in G$,

$$
g H=H g
$$

then we say that H is a normal subgroup of G.

$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$

$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$

- $3 \mathbb{Z}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$

$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$

- $3 \mathbb{Z}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$
- $1+3 \mathbb{Z}=\{1,-2,4,-5,7, \ldots\}$

$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$

- $3 \mathbb{Z}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$
- $1+3 \mathbb{Z}=\{1,-2,4,-5,7, \ldots\}$
- $2+3 \mathbb{Z}=\{2,-1,5,-4,8, \ldots\}$

$\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$

- $3 \mathbb{Z}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$
- $1+3 \mathbb{Z}=\{1,-2,4,-5,7, \ldots\}$
- $2+3 \mathbb{Z}=\{2,-1,5,-4,8, \ldots\}$

$$
\mathbb{Z}=3 \mathbb{Z} \cup(1+3 \mathbb{Z}) \cup(2+3 \mathbb{Z})
$$

$\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

$\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

- $\langle 5\rangle=\{0,5\}$

$\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

- $\langle 5\rangle=\{0,5\}$
- $1+\langle 5\rangle=\{1,6\}$

$\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

- $\langle 5\rangle=\{0,5\}$
- $1+\langle 5\rangle=\{1,6\}$
- $2+\langle 5\rangle=\{2,7\}$

$\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

- $\langle 5\rangle=\{0,5\}$
- $1+\langle 5\rangle=\{1,6\}$
- $2+\langle 5\rangle=\{2,7\}$
- $3+\langle 5\rangle=\{3,8\}$

$\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

- $\langle 5\rangle=\{0,5\}$
- $1+\langle 5\rangle=\{1,6\}$
- $2+\langle 5\rangle=\{2,7\}$
- $3+\langle 5\rangle=\{3,8\}$
- $4+\langle 5\rangle=\{4,9\}$

$\mathbb{Z}_{10}=\{0,1,2,3,4,5,6,7,8,9\}$

$$
\begin{aligned}
& \text { - }\langle 5\rangle=\{0,5\} \\
& \text { - } 1+\langle 5\rangle=\{1,6\} \\
& \text { - } 2+\langle 5\rangle=\{2,7\} \\
& \text { - } 3+\langle 5\rangle=\{3,8\} \\
& \text { - } 4+\langle 5\rangle=\{4,9\} \\
& \mathbb{Z}_{10}=(\langle 5\rangle) \cup(1+\langle 5\rangle) \cup(2+\langle 5\rangle) \cup(3+\langle 5\rangle) \cup(4+\langle 5\rangle)
\end{aligned}
$$

Table of Contents

(1) Cosets - Again
(2) Normal Subgroups
(3) Quotient Groups

4 First Isomorphism Theorem for Groups
(5) Quotient Structures

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all $g \in G$,

$$
g H=H g
$$

then we say that H is a normal subgroup of G.
Example: $\left\langle r^{2}\right\rangle \subset D_{8}$

- $\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
- $r^{k}\left\langle r^{2}\right\rangle=\left\{r^{2+k}, r^{4+k}, r^{6+k}, r^{k}\right\}=\left\langle r^{2}\right\rangle r^{k}$
- $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
- $\left\langle r^{2}\right\rangle f=\left\{r^{2} f, r^{4} f, r^{6} f, f\right\}=\left\{f r^{6}, f r^{4}, f r^{2}, f\right\}$
- $D_{8}=\left\langle r^{2}\right\rangle \cup r\left\langle r^{2}\right\rangle \cup f\left\langle r^{2}\right\rangle \cup r f\left\langle r^{2}\right\rangle$

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all $g \in G$,

$$
g H=H g
$$

then we say that H is a normal subgroup of G.
Example: $\langle r\rangle \subset D_{8}$

- $\langle r\rangle=\left\{r, r^{2}, r^{3}, r^{4}, r^{5}, r^{6}, r^{7}, e\right\}$
- $f\langle r\rangle=\left\{f r, f r^{2}, f r^{3}, f r^{4}, f r^{5}, f r^{6}, f r^{7}, f\right\}$
- $D_{8}=\langle r\rangle \cup f\langle r\rangle$

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all $g \in G$,

$$
g H=H g
$$

then we say that H is a normal subgroup of G.
Example: $\langle 2\rangle \subset \mathbb{Z}_{8}$

- $\langle 2\rangle=\{2,4,6,0\}$
- $1+\langle 2\rangle=\{3,5,7,1\}=\langle 2\rangle+1$
- $\mathbb{Z}_{8}=\langle 2\rangle \cup(1+\langle 2\rangle)$

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all $g \in G$,

$$
g H=H g
$$

then we say that H is a normal subgroup of G.
Non-Example: $\langle f\rangle \subset D_{8}$

- $\langle f\rangle=\{f, e\}$
- $r\langle f\rangle=\{r f, r\}$
- $\langle f\rangle r=\{f r, r\}=\left\{r^{7} f, r\right\} \neq r\langle f\rangle$

Results on Normal Subgroups

Theorem
 If G is an abelian group, then all subgroups are normal.

Results on Normal Subgroups

Theorem

If G is an abelian group, then all subgroups are normal.

Theorem

If G is a finite group and a subgroup H has index 2, then H is normal.

Coset Properties

Theorem

Given a group G, subgroup $H \subseteq G$, and elements $a, b \in G$:
(1) $|H|=|a H|$,
(2) $|a H|=|b H|$,
(3) $\mathrm{aH}=b \mathrm{H}$ or $\mathrm{aH} \cap b H=\emptyset$, and
(4) $a H=b H$ if and only if $b^{-1} a \in H$.

Theorem

From the previous theorem, given a group G and subgroup $H \subseteq G$, the cosets of H partition G, e.g. for some set of $g_{i} \in G$

$$
\bigcup_{i} g_{i} H=G
$$

and $g_{i} H \cap g_{j} H=\emptyset$ when $i \neq j$.

Index 2 Implies Normal Proof

Proof.

- G a group, H a subgroup, and $[G: H]=2$

Index 2 Implies Normal Proof

Proof.

- G a group, H a subgroup, and $[G: H]=2$
- $g \in G$ and $g \notin H$

Index 2 Implies Normal Proof

Proof.

- G a group, H a subgroup, and $[G: H]=2$
- $g \in G$ and $g \notin H$
- $g H \cap H=\emptyset$ and $G=g H \cup H$

Index 2 Implies Normal Proof

Proof.

- G a group, H a subgroup, and $[G: H]=2$
- $g \in G$ and $g \notin H$
- $g H \cap H=\emptyset$ and $G=g H \cup H$
- $g H=G \backslash H$

Index 2 Implies Normal Proof

Proof.

- G a group, H a subgroup, and $[G: H]=2$
- $g \in G$ and $g \notin H$
- $g H \cap H=\emptyset$ and $G=g H \cup H$
- $g H=G \backslash H$
- $H g \cap H=\emptyset$ and $G=H g \cup H$

Index 2 Implies Normal Proof

Proof.

- G a group, H a subgroup, and $[G: H]=2$
- $g \in G$ and $g \notin H$
- $g H \cap H=\emptyset$ and $G=g H \cup H$
- $g H=G \backslash H$
- $H g \cap H=\emptyset$ and $G=H g \cup H$
- $H g=G \backslash H$

Index 2 Implies Normal Proof

Proof.

- G a group, H a subgroup, and $[G: H]=2$
- $g \in G$ and $g \notin H$
- $g H \cap H=\emptyset$ and $G=g H \cup H$
- $g H=G \backslash H$
- $H g \cap H=\emptyset$ and $G=H g \cup H$
- $H g=G \backslash H$
- $\therefore g H=H g$

Results on Normal Subgroups

Theorem

If G is an abelian group, then all subgroups are normal.

Theorem

If G is a finite group and a subgroup H has index 2, then H is normal.

Theorem

Let G be a group with subgroup N, then N is normal if and only if for all $g \in G$, $g N g^{-1}=N$.

$g \mathrm{Ng}^{-1}=N$ Proof

Part 1.

- G a group, N normal

$g \mathrm{Ng}^{-1}=N$ Proof

Part 1.

- G a group, N normal
- $g N=N g, \forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1}=n_{2} g$ (e.g. fr $=r^{-1} f$ in D_{n})

$g N g^{-1}=N$ Proof

Part 1.

- G a group, N normal
- $g N=N g, \forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1}=n_{2} g$ (e.g. fr $=r^{-1} f$ in D_{n})
- $g N g^{-1}=\left\{g n g^{-1} \mid n \in N\right\}$

$g N g^{-1}=N$ Proof

Part 1.

- G a group, N normal
- $g N=N g, \forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1}=n_{2} g$ (e.g. fr $=r^{-1} f$ in D_{n})
- $g N g^{-1}=\left\{g n g^{-1} \mid n \in N\right\}$
- $g n_{1} g^{-1}=n_{2} g g^{-1}=n_{2} \in N$, so $g N g^{-1} \subseteq N$

$g N g^{-1}=N$ Proof

Part 1.

- G a group, N normal
- $g N=N g, \forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1}=n_{2} g$ (e.g. fr $=r^{-1} f$ in D_{n})
- $g N g^{-1}=\left\{g n g^{-1} \mid n \in N\right\}$
- $g n_{1} g^{-1}=n_{2} g g^{-1}=n_{2} \in N$, so $g N g^{-1} \subseteq N$
- But, the previous steps are reversible, $n_{2}=n_{2} g g^{-1}=g n_{1} g^{-1}$, so $N \subseteq g N g^{-1}$

$g N g^{-1}=N$ Proof

Part 1.

- G a group, N normal
- $g N=N g, \forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1}=n_{2} g$ (e.g. fr $=r^{-1} f$ in D_{n})
- $g N g^{-1}=\left\{g n g^{-1} \mid n \in N\right\}$
- $g n_{1} g^{-1}=n_{2} g g^{-1}=n_{2} \in N$, so $g N g^{-1} \subseteq N$
- But, the previous steps are reversible, $n_{2}=n_{2} g g^{-1}=g n_{1} g^{-1}$, so $N \subseteq g N g^{-1}$
- $\therefore g N g^{-1}=N$

$g N g^{-1}=N$ Proof Continued

Part 2.

- G a group, $\forall g \in G: g N g^{-1}=N$

$g N g^{-1}=N$ Proof Continued

Part 2.

- G a group, $\forall g \in G: g N g^{-1}=N$
- $\forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1} g^{-1}=n_{2}$

$g N g^{-1}=N$ Proof Continued

Part 2.

- G a group, $\forall g \in G: g N g^{-1}=N$
- $\forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1} g^{-1}=n_{2}$
- $g n_{1}=n_{2} g$

$g N g^{-1}=N$ Proof Continued

Part 2.

- G a group, $\forall g \in G: g N g^{-1}=N$
- $\forall g \in G \forall n_{1} \in N \exists n_{2} \in N: g n_{1} g^{-1}=n_{2}$
- $g n_{1}=n_{2} g$
- $\therefore g N=N g$ and N is normal

Example and Non-Example in D_{4}

Example $\left\langle r^{2}\right\rangle$

$$
f\left\langle r^{2}\right\rangle f=\left\{f r^{2} f, \text { fef }\right\}
$$

Example and Non-Example in D_{4}

Example $\left\langle r^{2}\right\rangle$

$$
\begin{aligned}
f\left\langle r^{2}\right\rangle f & =\left\{f r^{2} f, f e f\right\} \\
& =\left\{f f r^{2}, e\right\}=\left\{r^{2}, e\right\}
\end{aligned}
$$

Example and Non-Example in D_{4}

Example $\left\langle r^{2}\right\rangle$

$$
\begin{aligned}
f\left\langle r^{2}\right\rangle f & =\left\{f r^{2} f, f e f\right\} \\
& =\left\{f f r^{2}, e\right\}=\left\{r^{2}, e\right\} \\
& =\left\langle r^{2}\right\rangle
\end{aligned}
$$

Example and Non-Example in D_{4}

Example $\left\langle r^{2}\right\rangle$

$$
\begin{aligned}
f\left\langle r^{2}\right\rangle f & =\left\{f r^{2} f, f e f\right\} \\
& =\left\{f f r^{2}, e\right\}=\left\{r^{2}, e\right\} \\
& =\left\langle r^{2}\right\rangle
\end{aligned}
$$

Non-Example $\langle f\rangle$

$$
r\langle f\rangle r^{3}=\left\{r f r^{3}, r e r^{3}\right\}
$$

Example and Non-Example in D_{4}

Example $\left\langle r^{2}\right\rangle$

$$
\begin{aligned}
f\left\langle r^{2}\right\rangle f & =\left\{f r^{2} f, f e f\right\} \\
& =\left\{f f r^{2}, e\right\}=\left\{r^{2}, e\right\} \\
& =\left\langle r^{2}\right\rangle
\end{aligned}
$$

Non-Example $\langle f\rangle$

$$
\begin{aligned}
r\langle f\rangle r^{3} & =\left\{r f r^{3}, r e r^{3}\right\} \\
& =\{r r f, e\}=\left\{r^{2} f, e\right\}
\end{aligned}
$$

Example and Non-Example in D_{4}

Example $\left\langle r^{2}\right\rangle$

$$
\begin{aligned}
f\left\langle r^{2}\right\rangle f & =\left\{f r^{2} f, f e f\right\} \\
& =\left\{f f r^{2}, e\right\}=\left\{r^{2}, e\right\} \\
& =\left\langle r^{2}\right\rangle
\end{aligned}
$$

Non-Example $\langle f\rangle$

$$
\begin{aligned}
r\langle f\rangle r^{3} & =\left\{r f r^{3}, r e r^{3}\right\} \\
& =\{r r f, e\}=\left\{r^{2} f, e\right\} \\
& \neq\langle f\rangle
\end{aligned}
$$

Example and Non-Example in D_{4}

Example $\left\langle r^{2}\right\rangle$

$$
\begin{aligned}
f\left\langle r^{2}\right\rangle f & =\left\{f r^{2} f, f e f\right\} \\
& =\left\{f f r^{2}, e\right\}=\left\{r^{2}, e\right\} \\
& =\left\langle r^{2}\right\rangle
\end{aligned}
$$

Non-Example $\langle f\rangle$

$$
\begin{aligned}
r\langle f\rangle r^{3} & =\left\{r f r^{3}, r e r^{3}\right\} \\
& =\{r r f, e\}=\left\{r^{2} f, e\right\} \\
& \neq\langle f\rangle
\end{aligned}
$$

(But, $\left\{r^{2} f, e\right\}$, is another subgroup of order 2.)

Kernels are Normal Subgroups

Theorem

Given a homomorphism $\phi: G \rightarrow \bar{G}$, the kernel of ϕ is a normal subgroup.

Kernels are Normal Subgroups

Theorem

Given a homomorphism $\phi: G \rightarrow \bar{G}$, the kernel of ϕ is a normal subgroup.

Proof.

- $k, k^{\prime} \in \operatorname{ker} \phi$ and $g \in G$

Kernels are Normal Subgroups

Theorem

Given a homomorphism $\phi: G \rightarrow \bar{G}$, the kernel of ϕ is a normal subgroup.

Proof.

- $k, k^{\prime} \in \operatorname{ker} \phi$ and $g \in G$
- $\phi\left(k k^{\prime}\right)=\phi(k) \phi\left(k^{\prime}\right)=e_{\bar{G}^{\prime}} e_{G}=e_{\bar{G}}$

Kernels are Normal Subgroups

Theorem

Given a homomorphism $\phi: G \rightarrow \bar{G}$, the kernel of ϕ is a normal subgroup.

Proof.

- $k, k^{\prime} \in \operatorname{ker} \phi$ and $g \in G$
- $\phi\left(k k^{\prime}\right)=\phi(k) \phi\left(k^{\prime}\right)=e_{\bar{G}_{G}} e_{G}=e_{\bar{G}}$
- $\phi\left(k^{-1}\right)=\phi(k)^{-1}=e_{G}$

Kernels are Normal Subgroups

Theorem

Given a homomorphism $\phi: G \rightarrow \bar{G}$, the kernel of ϕ is a normal subgroup.

Proof.

- $k, k^{\prime} \in \operatorname{ker} \phi$ and $g \in G$
- $\phi\left(k k^{\prime}\right)=\phi(k) \phi\left(k^{\prime}\right)=e_{\bar{G}} e_{\bar{G}}=e_{\bar{G}}$
- $\phi\left(k^{-1}\right)=\phi(k)^{-1}=e_{G}$
- $\therefore \operatorname{ker} \phi$ is a subgroup

Kernels are Normal Subgroups

Theorem

Given a homomorphism $\phi: G \rightarrow \bar{G}$, the kernel of ϕ is a normal subgroup.

Proof.

- $k, k^{\prime} \in \operatorname{ker} \phi$ and $g \in G$
- $\phi\left(k k^{\prime}\right)=\phi(k) \phi\left(k^{\prime}\right)=e_{\bar{G}} e_{\bar{G}}=e_{\bar{G}}$
- $\phi\left(k^{-1}\right)=\phi(k)^{-1}=e_{G}$
- $\therefore \operatorname{ker} \phi$ is a subgroup
- $\phi\left(g k g^{-1}\right)=\phi(g) \phi(k) \phi(g)^{-1}=\phi(g) e_{\bar{G}} \phi(g)^{-1}=e_{\bar{G}}$

Kernels are Normal Subgroups

Theorem

Given a homomorphism $\phi: G \rightarrow \bar{G}$, the kernel of ϕ is a normal subgroup.

Proof.

- $k, k^{\prime} \in \operatorname{ker} \phi$ and $g \in G$
- $\phi\left(k k^{\prime}\right)=\phi(k) \phi\left(k^{\prime}\right)=e_{\bar{G}} e_{\bar{G}}=e_{\bar{G}}$
- $\phi\left(k^{-1}\right)=\phi(k)^{-1}=e_{G}$
- $\therefore \operatorname{ker} \phi$ is a subgroup
- $\phi\left(g k g^{-1}\right)=\phi(g) \phi(k) \phi(g)^{-1}=\phi(g) e_{G} \phi(g)^{-1}=e_{\bar{G}}$
- $\therefore g(\operatorname{ker} \phi) g^{-1}=\operatorname{ker} \phi$ and $\operatorname{ker} \phi$ is normal

Table of Contents

(1) Cosets - Again
(2) Normal Subgroups
(3) Quotient Groups

4 First Isomorphism Theorem for Groups
(5) Quotient Structures

Quotients and Normal Subgroups

```
Theorem
If G is a group and N is a normal subgroup, then
\[
G / N=\{g N \mid g \in G\}
\]
\[
\text { is a group with arithmetic defined by }(g N)(h N)=(g h N) .
\]
```


Coset Properties

Theorem

Given a group G, subgroup $H \subseteq G$, and elements $a, b \in G$:
(1) $|H|=|a H|$,
(2) $|a H|=|b H|$,
(3) $\mathrm{aH}=b \mathrm{H}$ or $\mathrm{aH} \cap b H=\emptyset$, and
(4) $a H=b H$ if and only if $b^{-1} a \in H$.

Quotients and Normal Subgroups Proof

Part 1: Closure and Associativity.

- $g, h \in G$ and $n_{1}, n_{2} \in N$ and N is normal

Quotients and Normal Subgroups Proof

Part 1: Closure and Associativity.

- $g, h \in G$ and $n_{1}, n_{2} \in N$ and N is normal
- $g n_{1} \in g N$ and $h n_{2} \in h N$

Quotients and Normal Subgroups Proof

Part 1: Closure and Associativity.

- $g, h \in G$ and $n_{1}, n_{2} \in N$ and N is normal
- $g n_{1} \in g N$ and $h n_{2} \in h N$
- $g n_{1} h n_{2}=g h n_{3} n_{2} \in g h N$ for some $n_{3} \in N$

Quotients and Normal Subgroups Proof

Part 1: Closure and Associativity.

- $g, h \in G$ and $n_{1}, n_{2} \in N$ and N is normal
- $g n_{1} \in g N$ and $h n_{2} \in h N$
- $g n_{1} h n_{2}=g h n_{3} n_{2} \in g h N$ for some $n_{3} \in N$
- \therefore We get closure

Quotients and Normal Subgroups Proof

Part 1: Closure and Associativity.

- $g, h \in G$ and $n_{1}, n_{2} \in N$ and N is normal
- $g n_{1} \in g N$ and $h n_{2} \in h N$
- $g n_{1} h n_{2}=g h n_{3} n_{2} \in g h N$ for some $n_{3} \in N$
- \therefore We get closure
- Associativity is "inhereted" from G

Quotients and Normal Subgroups Proof

Part 2: Well Defined.

- $g, h, g^{\prime}, h^{\prime} \in G$ with $g N=g^{\prime} N$ and $h N=h^{\prime} N$

Quotients and Normal Subgroups Proof

Part 2: Well Defined.

- $g, h, g^{\prime}, h^{\prime} \in G$ with $g N=g^{\prime} N$ and $h N=h^{\prime} N$
- $g^{-1} g^{\prime}=n_{1} \in N$ and $h^{-1} h^{\prime}=n_{2} \in N$

Quotients and Normal Subgroups Proof

Part 2: Well Defined.

- $g, h, g^{\prime}, h^{\prime} \in G$ with $g N=g^{\prime} N$ and $h N=h^{\prime} N$
- $g^{-1} g^{\prime}=n_{1} \in N$ and $h^{-1} h^{\prime}=n_{2} \in N$
- $(g h)^{-1}\left(g^{\prime} h^{\prime}\right)=h^{-1} g^{-1} g^{\prime} h^{\prime}=h^{-1} n_{1} h^{\prime}=h^{-1} h^{\prime} n_{3}=n_{2} n_{3} \in N$

Quotients and Normal Subgroups Proof

Part 2: Well Defined.

- $g, h, g^{\prime}, h^{\prime} \in G$ with $g N=g^{\prime} N$ and $h N=h^{\prime} N$
- $g^{-1} g^{\prime}=n_{1} \in N$ and $h^{-1} h^{\prime}=n_{2} \in N$
- $(g h)^{-1}\left(g^{\prime} h^{\prime}\right)=h^{-1} g^{-1} g^{\prime} h^{\prime}=h^{-1} n_{1} h^{\prime}=h^{-1} h^{\prime} n_{3}=n_{2} n_{3} \in N$
- $g h N=g^{\prime} h^{\prime} N$

Quotients and Normal Subgroups Proof

Part 2: Well Defined.

- $g, h, g^{\prime}, h^{\prime} \in G$ with $g N=g^{\prime} N$ and $h N=h^{\prime} N$
- $g^{-1} g^{\prime}=n_{1} \in N$ and $h^{-1} h^{\prime}=n_{2} \in N$
- $(g h)^{-1}\left(g^{\prime} h^{\prime}\right)=h^{-1} g^{-1} g^{\prime} h^{\prime}=h^{-1} n_{1} h^{\prime}=h^{-1} h^{\prime} n_{3}=n_{2} n_{3} \in N$
- $g h N=g^{\prime} h^{\prime} N$
- $\therefore(g N)(h N)=g h N$ is well defined

Quotients and Normal Subgroups Proof

Part 3: Identity and Inverses.

- $g \in G$

Quotients and Normal Subgroups Proof

Part 3: Identity and Inverses.

- $g \in G$
- $(g N)(e N)=g e N=g N$

Quotients and Normal Subgroups Proof

Part 3: Identity and Inverses.

- $g \in G$
- $(g N)(e N)=g e N=g N$
- $(g N)\left(g^{-1} N\right)=g g^{-1} N=e N=N$

Quotients and Normal Subgroups Proof

Part 3: Identity and Inverses.

- $g \in G$
- $(g N)(e N)=g e N=g N$
- $(g N)\left(g^{-1} N\right)=g g^{-1} N=e N=N$
- \therefore There exists an identity and inverses

Quotients and Normal Subgroups Proof

Part 3: Identity and Inverses.

- $g \in G$
- $(g N)(e N)=g e N=g N$
- $(g N)\left(g^{-1} N\right)=g g^{-1} N=e N=N$
- \therefore There exists an identity and inverses
- $\therefore G / N$ is a group

Quotient Group Example: $N=\left\langle r^{2}\right\rangle \subset D_{8}$

From before we have:
(1) $N=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
(2) $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
(3) $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
(4) $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

Thus we get

$$
D_{8}=N \cup f N \cup r N \cup f r N
$$

Quotient Group Example: $N=\left\langle r^{2}\right\rangle \subset D_{8}$

From before we have:
(1) $N=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
(2) $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
(3) $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
(4) $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

Thus we get

$$
D_{8}=N \cup f N \cup r N \cup f r N
$$

Composition Table for D_{8} / N :
(Below an element g represents the coset $g N$)

Quotient Group Example: $N=\left\langle r^{2}\right\rangle \subset D_{8}$

From before we have:
(1) $N=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
(2) $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
(3) $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
(4) $f r\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

Thus we get

$$
D_{8}=N \cup f N \cup r N \cup f r N
$$

Composition Table for D_{8} / N :
(Below an element g represents the coset $g N$)

\circ	e	r	f	$f r$
e	e	r	f	$f r$
r	r	r^{2}	$r f$	$r f r$
f	f	$f r$	e	r
$f r$	$f r$	$f r^{2}$	$f r f$	$f r f r$

Rewrite each element in the table so that it is in the form r^{k} or $f r^{k}$, then identify which coset it's in.

Quotient Group Example: $N=\left\langle r^{2}\right\rangle \subset D_{8}$

From before we have:
(1) $N=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
(2) $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
(3) $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
(4) $f r\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

Thus we get

$$
D_{8}=N \cup f N \cup r N \cup f r N
$$

Composition Table for D_{8} / N :
(Below an element g represents the coset $g N$)

\circ	e	r	f	$f r$
e	e	r	f	$f r$
r	r	e	$f r$	f
f	f	$f r$	e	r
$f r$	$f r$	$f r^{2}$	$f r f$	$f r f r$

Rewrite each element in the table so that it is in the form r^{k} or $f r^{k}$, then identify which coset it's in.

Quotient Group Example: $N=\left\langle r^{2}\right\rangle \subset D_{8}$

From before we have:
(1) $N=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
(2) $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
(3) $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
(4) $f r\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

Thus we get

$$
D_{8}=N \cup f N \cup r N \cup f r N
$$

Composition Table for D_{8} / N :
(Below an element g represents the coset $g N$)

\circ	e	r	f	$f r$
e	e	r	f	$f r$
r	r	e	$f r$	f
f	f	$f r$	e	r
$f r$	$f r$	f	r	e

Rewrite each element in the table so that it is in the form r^{k} or $f r^{k}$, then identify which coset it's in.

Quotient Group Example: $N=\left\langle r^{2}\right\rangle \subset D_{8}$

From before we have:
(1) $N=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
(2) $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
(3) $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
(4) $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

Thus we get

$$
D_{8}=N \cup f N \cup r N \cup f r N
$$

Composition Table for D_{8} / N :
(Below an element g represents the coset $g N$)

\circ	e	r	f	$f r$
e	e	r	f	$f r$
r	r	e	$f r$	f
f	f	$f r$	e	r
$f r$	$f r$	f	r	e

Abelian group with all elements of order 2.

Quotient Group Example: $N=\left\langle r^{2}\right\rangle \subset D_{8}$

From before we have:
(1) $N=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, r^{6}, e\right\}$
(2) $f\left\langle r^{2}\right\rangle=\left\{f r^{2}, f r^{4}, f r^{6}, f\right\}$
(3) $r\left\langle r^{2}\right\rangle=\left\{r^{3}, r^{5}, r^{7}, r\right\}$
(4) $\operatorname{fr}\left\langle r^{2}\right\rangle=\left\{f r^{3}, f r^{5}, f r^{7}, f r\right\}$

Thus we get

$$
D_{8}=N \cup f N \cup r N \cup f r N
$$

Composition Table for D_{8} / N :
(Below an element g represents the coset $g N$)

\circ	e	r	f	$f r$
e	e	r	f	$f r$
r	r	e	$f r$	f
f	f	$f r$	e	r
$f r$	$f r$	f	r	e

Abelian group with all elements of order 2.

$$
D_{8} / N \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=$
$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$
- $\phi\left(r^{2 k+1} f\right)=$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$
- $\phi\left(r^{2 k+1} f\right)=(1,2 k+1) \equiv(1,1)$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$
- $\phi\left(r^{2 k+1} f\right)=(1,2 k+1) \equiv(1,1)$
- $\phi\left(f r^{-2 k-1}\right)=$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$
- $\phi\left(r^{2 k+1} f\right)=(1,2 k+1) \equiv(1,1)$
- $\phi\left(f r^{-2 k-1}\right)=(1,-2 k-1) \equiv(1,1)$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$
- $\phi\left(r^{2 k+1} f\right)=(1,2 k+1) \equiv(1,1)$
- $\phi\left(f r^{-2 k-1}\right)=(1,-2 k-1) \equiv(1,1)$
- $\phi\left(f^{\prime} r^{k}\right)=(I, k) \equiv(0,0)$ implies I and k are both even

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$
- $\phi\left(r^{2 k+1} f\right)=(1,2 k+1) \equiv(1,1)$
- $\phi\left(f r^{-2 k-1}\right)=(1,-2 k-1) \equiv(1,1)$
- $\phi\left(f^{\prime} r^{k}\right)=(I, k) \equiv(0,0)$ implies I and k are both even
- $\operatorname{ker} \phi=\left\langle r^{2}\right\rangle$

$\phi: D_{8} \longrightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

- $\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
- $\phi(r)=(0,1)$
- $\phi(f)=(1,0)$
- $\phi\left(r^{2 k} f\right)=(1,2 k) \equiv(1,0)$
- $\phi\left(f r^{-2 k}\right)=(1,-2 k) \equiv(1,0)$
- $\phi\left(r^{2 k+1} f\right)=(1,2 k+1) \equiv(1,1)$
- $\phi\left(f r^{-2 k-1}\right)=(1,-2 k-1) \equiv(1,1)$
- $\phi\left(f^{\prime} r^{k}\right)=(I, k) \equiv(0,0)$ implies I and k are both even
- $\operatorname{ker} \phi=\left\langle r^{2}\right\rangle$
- We will show, eventually, that this is why $D_{8} /\left\langle r^{2}\right\rangle \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

Normal Subgroups are Kernels

Theorem

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism.

Normal Subgroups are Kernels

Theorem

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism.

Proof.

(1) Define $\phi(g)=g N$ in G / N

Normal Subgroups are Kernels

Theorem

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism.

Proof.

(1) Define $\phi(g)=g N$ in G / N
(2) $\forall n \in N: \phi(n)=n N=e N$, so $N \subseteq \operatorname{ker} \phi$

Normal Subgroups are Kernels

Theorem

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism.

Proof.

(1) Define $\phi(g)=g N$ in G / N
(2) $\forall n \in N: \phi(n)=n N=e N$, so $N \subseteq \operatorname{ker} \phi$
(3) $\forall k \in \operatorname{ker} \phi: \phi(k)=k N=e N$, thus $k=e k \in N$ and $k e r \phi \subseteq N$

Normal Subgroups are Kernels

Theorem

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism.

Proof.

(1) Define $\phi(g)=g N$ in G / N
(2) $\forall n \in N: \phi(n)=n N=e N$, so $N \subseteq \operatorname{ker} \phi$
(3) $\forall k \in \operatorname{ker} \phi: \phi(k)=k N=e N$, thus $k=e k \in N$ and $k e r \phi \subseteq N$
(4) $\therefore N=k e r \phi$

Table of Contents

(1) Cosets - Again
(2) Normal Subgroups
(3) Quotient Groups
(4) First Isomorphism Theorem for Groups
(5) Quotient Structures
C. F. Rocca Jr. (WCSU)

First Isomorphism Theorem

Theorem

If $\phi: G \rightarrow \bar{G}$ is a surjective homomorphism with kernel $K=\operatorname{ker} \phi$, then $G / K \cong \bar{G}$.

Examples

$\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$
Define $\phi\left(f^{\prime} r^{k}\right)=(I, k)(\bmod 2)$, then from before $\operatorname{ker} \phi=\left\langle r^{2}\right\rangle$ and $D_{8} / \operatorname{ker} \phi \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. This agrees with the conclusion of the First Isomorphism Theorem.

Examples

$\phi: D_{8} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

Define $\phi\left(f^{\prime} r^{k}\right)=(I, k)(\bmod 2)$, then from before $\operatorname{ker} \phi=\left\langle r^{2}\right\rangle$ and $D_{8} / \operatorname{ker} \phi \cong \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. This agrees with the conclusion of the First Isomorphism Theorem.

$\phi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$

If we define $\phi(z)=z(\bmod n)$, then the kernel will be $\operatorname{ker} \phi=n \mathbb{Z}$ since those are precisely the numbers equal to zero modulo n. The First Isomorphism Theorem tells us then that $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$.

Null Space

$$
T: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}
$$

- $T(\vec{v})=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)\binom{x}{y}=\binom{x+3 y}{2 x+6 y}$

Null Space

$T: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$

- $T(\vec{v})=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)\binom{x}{y}=\binom{x+3 y}{2 x+6 y}$
- $T=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right) \sim\left(\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right)$

Null Space

$T: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$

- $T(\vec{v})=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)\binom{x}{y}=\binom{x+3 y}{2 x+6 y}$
- $T=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right) \sim\left(\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right)$
- $\operatorname{ker} T=$ Null $T=\left\langle\binom{-3}{1}\right\rangle$

Null Space

$T: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$

- $T(\vec{v})=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right)\binom{x}{y}=\binom{x+3 y}{2 x+6 y}$
- $T=\left(\begin{array}{ll}1 & 3 \\ 2 & 6\end{array}\right) \sim\left(\begin{array}{ll}1 & 3 \\ 0 & 0\end{array}\right)$
- $\operatorname{ker} T=$ Null $T=\left\langle\binom{-3}{1}\right\rangle$
- $\operatorname{Col} T=\left\langle\binom{ 1}{2}\right\rangle \cong \mathbb{Z}^{2} / \operatorname{ker} T=\left\{\left.\binom{z}{0}+\operatorname{ker} T \right\rvert\, z \in \mathbb{Z}\right\}$

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$
- $\bar{\phi}(g K)=\phi(g)$

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$
- $\bar{\phi}(g K)=\phi(g)$
- $\bar{\phi}\left(g_{1} K\right)=\bar{\phi}\left(g_{2} K\right)$ implies $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$
- $\bar{\phi}(g K)=\phi(g)$
- $\bar{\phi}\left(g_{1} K\right)=\bar{\phi}\left(g_{2} K\right)$ implies $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$
- $e_{\bar{G}}=\phi\left(g_{2}\right)^{-1} \phi\left(g_{1}\right)=\phi\left(g_{2}^{-1} g_{1}\right)$

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$
- $\bar{\phi}(g K)=\phi(g)$
- $\bar{\phi}\left(g_{1} K\right)=\bar{\phi}\left(g_{2} K\right)$ implies $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$
- $e_{\bar{G}}=\phi\left(g_{2}\right)^{-1} \phi\left(g_{1}\right)=\phi\left(g_{2}^{-1} g_{1}\right)$
- $g_{2}^{-1} g_{1} \in K$ and $g_{1} K=g_{2} K$

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$
- $\bar{\phi}(g K)=\phi(g)$
- $\bar{\phi}\left(g_{1} K\right)=\bar{\phi}\left(g_{2} K\right)$ implies $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$
- $e_{\bar{G}}=\phi\left(g_{2}\right)^{-1} \phi\left(g_{1}\right)=\phi\left(g_{2}^{-1} g_{1}\right)$
- $g_{2}^{-1} g_{1} \in K$ and $g_{1} K=g_{2} K$
- $\therefore \bar{\phi}$ is injective and thus an isomorphism

First Isomorphism Theorem Proof

Proof.

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$
- $\bar{\phi}(g K)=\phi(g)$
- $\bar{\phi}\left(g_{1} K\right)=\bar{\phi}\left(g_{2} K\right)$ implies $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$
- $e_{G}=\phi\left(g_{2}\right)^{-1} \phi\left(g_{1}\right)=\phi\left(g_{2}^{-1} g_{1}\right)$
- $g_{2}^{-1} g_{1} \in K$ and $g_{1} K=g_{2} K$
- $\therefore \bar{\phi}$ is injective and thus an isomorphism
- Why didn't we have to show $\bar{\phi}$ is surjective?

Table of Contents

(1) Cosets - Again

2 Normal Subgroups
(3) Quotient Groups

4 First Isomorphism Theorem for Groups
(5) Quotient Structures

Modular Equivalence and Arithmetic

- $n>0$ an element of \mathbb{Z}

Modular Equivalence and Arithmetic

- $n>0$ an element of \mathbb{Z}
- $a \equiv b(\bmod n)$ if and only if $n \mid(a-b)$

Modular Equivalence and Arithmetic

- $n>0$ an element of \mathbb{Z}
- $a \equiv b(\bmod n)$ if and only if $n \mid(a-b)$
- Theorem: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then

Modular Equivalence and Arithmetic

- $n>0$ an element of \mathbb{Z}
- $a \equiv b(\bmod n)$ if and only if $n \mid(a-b)$
- Theorem: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then
(1) $a \pm c \equiv b \pm d(\bmod n)$

Modular Equivalence and Arithmetic

- $n>0$ an element of \mathbb{Z}
- $a \equiv b(\bmod n)$ if and only if $n \mid(a-b)$
- Theorem: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then
(1) $a \pm c \equiv b \pm d(\bmod n)$
(2) $a c \equiv b d(\bmod n)$

Modular Equivalence and Arithmetic

- $n>0$ an element of \mathbb{Z}
- $a \equiv b(\bmod n)$ if and only if $n \mid(a-b)$
- Theorem: If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then
(1) $a \pm c \equiv b \pm d(\bmod n)$
(2) $a c \equiv b d(\bmod n)$
- $\mathbb{Z}_{n} \cong \mathbb{Z} / n \mathbb{Z}=\{a+n \mathbb{Z} \mid a \in \mathbb{Z}\}$

Polynomial Equivalence and Arithmetic

- $n(x) \neq 0$ an element of $F[x]$

Polynomial Equivalence and Arithmetic

- $n(x) \neq 0$ an element of $F[x]$
- $a(x) \equiv b(x)(\bmod n(x))$ if and only if $n(x) \mid(a(x)-b(x))$

Polynomial Equivalence and Arithmetic

- $n(x) \neq 0$ an element of $F[x]$
- $a(x) \equiv b(x)(\bmod n(x))$ if and only if $n(x) \mid(a(x)-b(x))$
- Theorem: If $a(x) \equiv b(x)(\bmod n(x))$ and $c(x) \equiv d(x)(\bmod n(x))$, then

Polynomial Equivalence and Arithmetic

- $n(x) \neq 0$ an element of $F[x]$
- $a(x) \equiv b(x)(\bmod n(x))$ if and only if $n(x) \mid(a(x)-b(x))$
- Theorem: If $a(x) \equiv b(x)(\bmod n(x))$ and $c(x) \equiv d(x)(\bmod n(x))$, then
(1) $a(x) \pm c(x) \equiv b(x) \pm d(x)(\bmod n(x))$

Polynomial Equivalence and Arithmetic

- $n(x) \neq 0$ an element of $F[x]$
- $a(x) \equiv b(x)(\bmod n(x))$ if and only if $n(x) \mid(a(x)-b(x))$
- Theorem: If $a(x) \equiv b(x)(\bmod n(x))$ and $c(x) \equiv d(x)(\bmod n(x))$, then
(1) $a(x) \pm c(x) \equiv b(x) \pm d(x)(\bmod n(x))$
(2) $a(x) c(x) \equiv b(x) d(x)(\bmod n(x))$

Polynomial Equivalence and Arithmetic

- $n(x) \neq 0$ an element of $F[x]$
- $a(x) \equiv b(x)(\bmod n(x))$ if and only if $n(x) \mid(a(x)-b(x))$
- Theorem: If $a(x) \equiv b(x)(\bmod n(x))$ and $c(x) \equiv d(x)(\bmod n(x))$, then
(1) $a(x) \pm c(x) \equiv b(x) \pm d(x)(\bmod n(x))$
(2) $a(x) c(x) \equiv b(x) d(x)(\bmod n(x))$
- $F[x] /\langle n(x)\rangle=\{a(x)+\langle n(x)\rangle \mid a(x) \in F[x]\}$

Ideals and Quotient Rings

- I an (two-sided) ideal in R

Ideals and Quotient Rings

- I an (two-sided) ideal in R
- $a \equiv b(\bmod I)$ if and only if $a-b \in I$

Ideals and Quotient Rings

- I an (two-sided) ideal in R
- $a \equiv b(\bmod I)$ if and only if $a-b \in I$
- Theorem: If $a \equiv b(\bmod I)$ and $c \equiv d(\bmod I)$, then

Ideals and Quotient Rings

- I an (two-sided) ideal in R
- $a \equiv b(\bmod I)$ if and only if $a-b \in I$
- Theorem: If $a \equiv b(\bmod I)$ and $c \equiv d(\bmod I)$, then
(1) $a \pm c \equiv b \pm d(\bmod /)$

Ideals and Quotient Rings

- I an (two-sided) ideal in R
- $a \equiv b(\bmod I)$ if and only if $a-b \in I$
- Theorem: If $a \equiv b(\bmod I)$ and $c \equiv d(\bmod I)$, then
(1) $a \pm c \equiv b \pm d(\bmod I)$
(2) $a c \equiv b d(\bmod I)$

Ideals and Quotient Rings

- I an (two-sided) ideal in R
- $a \equiv b(\bmod I)$ if and only if $a-b \in I$
- Theorem: If $a \equiv b(\bmod I)$ and $c \equiv d(\bmod I)$, then
(1) $a \pm c \equiv b \pm d(\bmod I)$
(2) $a c \equiv b d(\bmod I)$
- Quotient Ring $R / I=\{r+I \mid r \in R\}$

First Isomorphism Theorem for Rings

- $\phi: R \rightarrow S$ a surjective homomorphism

First Isomorphism Theorem for Rings

- $\phi: R \rightarrow S$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is an ideal

First Isomorphism Theorem for Rings

- $\phi: R \rightarrow S$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is an ideal
- R / K is a ring

First Isomorphism Theorem for Rings

- $\phi: R \rightarrow S$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is an ideal
- R / K is a ring
- $R / K \cong S$

First Isomorphism Theorem for Rings

- $\phi: R \rightarrow S$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is an ideal
- R / K is a ring
- $R / K \cong S$
- I is an ideal of R if and only if it is the kernel of a homomorphism

Normal Subgroups and Quotient Groups

- N a normal subgroup in (G, \cdot)

Normal Subgroups and Quotient Groups

- N a normal subgroup in (G, \cdot)
- $a \equiv b(\bmod N)$ if and only if $b^{-1} a \in N$

Normal Subgroups and Quotient Groups

- N a normal subgroup in (G, \cdot)
- $a \equiv b(\bmod N)$ if and only if $b^{-1} a \in N$
- Theorem: If $a \equiv b(\bmod N)$ and $c \equiv d(\bmod N)$, then

Normal Subgroups and Quotient Groups

- N a normal subgroup in (G, \cdot)
- $a \equiv b(\bmod N)$ if and only if $b^{-1} a \in N$
- Theorem: If $a \equiv b(\bmod N)$ and $c \equiv d(\bmod N)$, then
(1) $a c \equiv b d(\bmod N)$

Normal Subgroups and Quotient Groups

- N a normal subgroup in (G, \cdot)
- $a \equiv b(\bmod N)$ if and only if $b^{-1} a \in N$
- Theorem: If $a \equiv b(\bmod N)$ and $c \equiv d(\bmod N)$, then
(1) $a c \equiv b d(\bmod N)$
- Quotient Group $G / N=\{g N \mid g \in G\}$

First Isomorphism Theorem for Groups

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism

First Isomorphism Theorem for Groups

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is a normal subgroup

First Isomorphism Theorem for Groups

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is a normal subgroup
- G / K is a group

First Isomorphism Theorem for Groups

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is a normal subgroup
- G / K is a group
- $G / K \cong \bar{G}$

First Isomorphism Theorem for Groups

- $\phi: G \rightarrow \bar{G}$ a surjective homomorphism
- $K=\operatorname{ker} \phi$ is a normal subgroup
- G / K is a group
- $G / K \cong \bar{G}$
- N is a normal subgroup of G if and only if it is the kernel of a homomorphism

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces
- $T: V \rightarrow \bar{V}$ a linear transformation $(T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w}))$

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces
- $T: V \rightarrow \bar{V}$ a linear transformation $(T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w}))$
- $K=\operatorname{ker} T=$ Null T is a subspace of V

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces
- $T: V \rightarrow \bar{V}$ a linear transformation $(T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w}))$
- $K=\operatorname{ker} T=$ Null T is a subspace of V
- $\vec{v} \equiv \vec{w}(\bmod K)$ if and only if $\vec{v}-\vec{w} \in K$

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces
- $T: V \rightarrow \bar{V}$ a linear transformation $(T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w}))$
- $K=\operatorname{ker} T=$ Null T is a subspace of V
- $\vec{v} \equiv \vec{w}(\bmod K)$ if and only if $\vec{v}-\vec{w} \in K$
- Theorem: If $\vec{a} \equiv \vec{b}(\bmod K)$ and $\vec{c} \equiv \vec{d}(\bmod K)$, then

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces
- $T: V \rightarrow \bar{V}$ a linear transformation $(T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w}))$
- $K=\operatorname{ker} T=$ Null T is a subspace of V
- $\vec{v} \equiv \vec{w}(\bmod K)$ if and only if $\vec{v}-\vec{w} \in K$
- Theorem: If $\vec{a} \equiv \vec{b}(\bmod K)$ and $\vec{c} \equiv \vec{d}(\bmod K)$, then
(1) $x \vec{a}+y \vec{c} \equiv x \vec{b}+y \vec{d}(\bmod K)$

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces
- $T: V \rightarrow \bar{V}$ a linear transformation $(T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w}))$
- $K=\operatorname{ker} T=$ Null T is a subspace of V
- $\vec{v} \equiv \vec{w}(\bmod K)$ if and only if $\vec{v}-\vec{w} \in K$
- Theorem: If $\vec{a} \equiv \vec{b}(\bmod K)$ and $\vec{c} \equiv \vec{d}(\bmod K)$, then
(1) $x \vec{a}+y \vec{c} \equiv x \vec{b}+y \vec{d}(\bmod K)$
- Quotient Space $V / K=\{\vec{v}+K \mid \vec{v} \in V\} \cong \operatorname{Col} T \subseteq \bar{V}$

Vector Spaces and Linear Transformations

- V and \bar{V} vector spaces
- $T: V \rightarrow \bar{V}$ a linear transformation $(T(a \vec{v}+b \vec{w})=a T(\vec{v})+b T(\vec{w}))$
- $K=\operatorname{ker} T=$ Null T is a subspace of V
- $\vec{v} \equiv \vec{w}(\bmod K)$ if and only if $\vec{v}-\vec{w} \in K$
- Theorem: If $\vec{a} \equiv \vec{b}(\bmod K)$ and $\vec{c} \equiv \vec{d}(\bmod K)$, then
(1) $x \vec{a}+y \vec{c} \equiv x \vec{b}+y \vec{d}(\bmod K)$
- Quotient Space $V / K=\{\vec{v}+K \mid \vec{v} \in V\} \cong \operatorname{Col} T \subseteq \bar{V}$
- Every null space/kernel is a subspace and any subspace can be a null space/kernel

Quotient Structures

- S an algebraic structure with some set of operations $\left\{*_{s}\right\}$

Quotient Structures

- S an algebraic structure with some set of operations $\left\{*_{s}\right\}$
- Equivalence Relation $a \sim b$ defined on S

Quotient Structures

- S an algebraic structure with some set of operations $\left\{*_{s}\right\}$
- Equivalence Relation $a \sim b$ defined on S
- If the relation respects the operations on S, i.e. $a \sim b$ and $c \sim d$ implies $a *_{s} c \sim b *_{s} d$, then

Quotient Structures

- S an algebraic structure with some set of operations $\left\{*_{s}\right\}$
- Equivalence Relation $a \sim b$ defined on S
- If the relation respects the operations on S, i.e. $a \sim b$ and $c \sim d$ implies $a *_{s} c \sim b *_{s} d$, then
- Quotient Structure S / \sim, the set of equivalence classes, has the same sort of structure as S

First Isomorphism Theorem

- S and \bar{S} algebraic structures with some set of operations

First Isomorphism Theorem

- S and \bar{S} algebraic structures with some set of operations
- $\phi: S \rightarrow \bar{S}$ a function respecting the operations in S and \bar{S}

First Isomorphism Theorem

- S and \bar{S} algebraic structures with some set of operations
- $\phi: S \rightarrow \bar{S}$ a function respecting the operations in S and \bar{S}
- $K=\operatorname{ker} \phi$ is a substructure of S

First Isomorphism Theorem

- S and \bar{S} algebraic structures with some set of operations
- $\phi: S \rightarrow \bar{S}$ a function respecting the operations in S and \bar{S}
- $K=\operatorname{ker} \phi$ is a substructure of S
- $S / K \cong \phi(S) \subseteq \bar{S}$

First Isomorphism Theorem

- S and \bar{S} algebraic structures with some set of operations
- $\phi: S \rightarrow \bar{S}$ a function respecting the operations in S and \bar{S}
- $K=\operatorname{ker} \phi$ is a substructure of S
- $S / K \cong \phi(S) \subseteq \bar{S}$
- There is a class of substructures of S that are all possible kernels

Quotients and Homomorphisms

Dr. Chuck Rocca

WESTERN

 CONNECTICUT STATE UNIVERSITYMACRICOSTAS
SCHOOL OF ARTS 8 SCIENCES

