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Cosets - Again

Calculating in Dn
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frk = r−k f = rn−k f
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Cosets - Again
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〉
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r

r f

r

r

f
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r
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Cosets - Again

Definition of Cosets

Definition (Coset)

Given a group G , subgroup H, and element g ∈ G ,

gH = {gh|h ∈ H}

is a left coset of H and
Hg = {hg |h ∈ H}

is a right coset of H.

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all g ∈ G ,

gH = Hg ,

then we say that H is a normal subgroup of G .
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Cosets - Again

Z = {0,±1,±2, . . .}

−3 −2 −1 0 1 2 3 4 5

3Z = {0,±3,±6,±9, . . .}
1 + 3Z = {1,−2, 4,−5, 7, . . .}
2 + 3Z = {2,−1, 5,−4, 8, . . .}

Z = 3Z ∪ (1 + 3Z) ∪ (2 + 3Z)
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Cosets - Again

Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Z10 0

1

23

4

5

6

7 8

9

⟨5⟩ = {0, 5}
1 + ⟨5⟩ = {1, 6}
2 + ⟨5⟩ = {2, 7}
3 + ⟨5⟩ = {3, 8}
4 + ⟨5⟩ = {4, 9}

Z10 = (⟨5⟩) ∪ (1 + ⟨5⟩) ∪ (2 + ⟨5⟩) ∪ (3 + ⟨5⟩) ∪ (4 + ⟨5⟩)
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Normal Subgroups
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Normal Subgroups

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all g ∈ G ,

gH = Hg ,

then we say that H is a normal subgroup of G .

Example:
〈
r2
〉
⊂ D8〈

r 2
〉
=

{
r 2, r 4, r 6, e

}
r k

〈
r 2
〉
=

{
r 2+k , r 4+k , r 6+k , r k

}
=

〈
r 2
〉
r k

f
〈
r 2
〉
=

{
fr 2, fr 4, fr 6, f

}〈
r 2
〉
f =

{
r 2f , r 4f , r 6f , f

}
=

{
fr 6, fr 4, fr 2, f

}
D8 =

〈
r 2
〉
∪ r

〈
r 2
〉
∪ f

〈
r 2
〉
∪ rf

〈
r 2
〉
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Normal Subgroups

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all g ∈ G ,

gH = Hg ,

then we say that H is a normal subgroup of G .

Example: ⟨r⟩ ⊂ D8

⟨r⟩ =
{
r , r 2, r 3, r 4, r 5, r 6, r 7, e

}
f ⟨r⟩ =

{
fr , fr 2, fr 3, fr 4, fr 5, fr 6, fr 7, f

}
D8 = ⟨r⟩ ∪ f ⟨r⟩
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Normal Subgroups

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all g ∈ G ,

gH = Hg ,

then we say that H is a normal subgroup of G .

Example: ⟨2⟩ ⊂ Z8

⟨2⟩ = {2, 4, 6, 0}
1 + ⟨2⟩ = {3, 5, 7, 1} = ⟨2⟩+ 1

Z8 = ⟨2⟩ ∪ (1 + ⟨2⟩)
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Normal Subgroups

Normal Subgroups

Definition (Normal Subgroup)

Given a group G and subgroup H, if for all g ∈ G ,

gH = Hg ,

then we say that H is a normal subgroup of G .

Non-Example: ⟨f ⟩ ⊂ D8

⟨f ⟩ = {f , e}
r ⟨f ⟩ = {rf , r}
⟨f ⟩ r = {fr , r} =

{
r 7f , r

}
̸= r ⟨f ⟩
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Normal Subgroups

Results on Normal Subgroups

Theorem

If G is an abelian group, then all subgroups are normal.

Theorem

If G is a finite group and a subgroup H has index 2, then H is normal.

Theorem

Let G be a group with subgroup N, then N is normal if and only if for all g ∈ G ,
gNg−1 = N.
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Normal Subgroups

Coset Properties

Theorem

Given a group G , subgroup H ⊆ G , and elements a, b ∈ G :

1 |H| = |aH|,
2 |aH| = |bH|,
3 aH = bH or aH ∩ bH = ∅, and
4 aH = bH if and only if b−1a ∈ H.

Theorem

From the previous theorem, given a group G and subgroup H ⊆ G , the cosets of H
partition G , e.g. for some set of gi ∈ G⋃

i

giH = G

and giH ∩ gjH = ∅ when i ̸= j .
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Normal Subgroups

Index 2 Implies Normal Proof

Proof.

G a group, H a subgroup, and [G : H] = 2

g ∈ G and g ̸∈ H

gH ∩ H = ∅ and G = gH ∪ H

gH = G \ H
Hg ∩ H = ∅ and G = Hg ∪ H

Hg = G \ H
∴ gH = Hg
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Normal Subgroups

Results on Normal Subgroups

Theorem

If G is an abelian group, then all subgroups are normal.

Theorem

If G is a finite group and a subgroup H has index 2, then H is normal.

Theorem
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Normal Subgroups

gNg−1 = N Proof

Part 1.

G a group, N normal

gN = Ng , ∀g ∈ G ∀n1 ∈ N ∃n2 ∈ N : gn1 = n2g (e.g. fr = r−1f in Dn)

gNg−1 =
{
gng−1

∣∣n ∈ N
}

gn1g
−1 = n2gg

−1 = n2 ∈ N, so gNg−1 ⊆ N

But, the previous steps are reversible, n2 = n2gg
−1 = gn1g

−1, so N ⊆ gNg−1

∴ gNg−1 = N
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Normal Subgroups

gNg−1 = N Proof Continued

Part 2.

G a group, ∀g ∈ G : gNg−1 = N

∀g ∈ G ∀n1 ∈ N ∃n2 ∈ N : gn1g
−1 = n2

gn1 = n2g

∴ gN = Ng and N is normal
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Normal Subgroups

Example and Non-Example in D4

Example
〈
r 2
〉

f
〈
r 2
〉
f =

{
fr 2f , fef

}

=
{
ffr 2, e

}
=

{
r 2, e

}
=

〈
r 2
〉

Non-Example ⟨f ⟩

r ⟨f ⟩ r 3 =
{
rfr 3, rer 3

}

= {rrf , e} =
{
r 2f , e

}
̸= ⟨f ⟩

(But,
{
r 2f , e

}
, is another subgroup of order 2.)
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Normal Subgroups

Kernels are Normal Subgroups

Theorem

Given a homomorphism ϕ : G → G , the kernel of ϕ is a normal subgroup.

Proof.

k, k ′ ∈ ker ϕ and g ∈ G

ϕ(kk ′) = ϕ(k)ϕ(k ′) = eGeG = eG

ϕ(k−1) = ϕ(k)−1 = eG

∴ ker ϕ is a subgroup

ϕ(gkg−1) = ϕ(g)ϕ(k)ϕ(g)−1 = ϕ(g)eGϕ(g)
−1 = eG

∴ g(ker ϕ)g−1 = ker ϕ and ker ϕ is normal
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Quotient Groups
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Quotient Groups

Quotients and Normal Subgroups

Theorem

If G is a group and N is a normal subgroup, then

G/N = {gN|g ∈ G}

is a group with arithmetic defined by (gN)(hN) = (ghN).
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Quotient Groups

Coset Properties

Theorem

Given a group G , subgroup H ⊆ G , and elements a, b ∈ G :

1 |H| = |aH|,
2 |aH| = |bH|,
3 aH = bH or aH ∩ bH = ∅, and
4 aH = bH if and only if b−1a ∈ H.

Theorem

From the previous theorem, given a group G and subgroup H ⊆ G , the cosets of H
partition G , e.g. for some set of gi ∈ G⋃

i

giH = G

and giH ∩ gjH = ∅ when i ̸= j .
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Quotient Groups

Quotients and Normal Subgroups Proof

Part 1: Closure and Associativity.

g , h ∈ G and n1, n2 ∈ N and N is normal

gn1 ∈ gN and hn2 ∈ hN

gn1hn2 = ghn3n2 ∈ ghN for some n3 ∈ N

∴ We get closure

Associativity is “inhereted” from G
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Quotient Groups

Quotients and Normal Subgroups Proof

Part 2: Well Defined.

g , h, g ′, h′ ∈ G with gN = g ′N and hN = h′N

g−1g ′ = n1 ∈ N and h−1h′ = n2 ∈ N

(gh)−1(g ′h′) = h−1g−1g ′h′ = h−1n1h
′ = h−1h′n3 = n2n3 ∈ N

ghN = g ′h′N

∴ (gN)(hN) = ghN is well defined
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Quotient Groups

Quotients and Normal Subgroups Proof

Part 3: Identity and Inverses.

g ∈ G

(gN)(eN) = geN = gN

(gN)(g−1N) = gg−1N = eN = N

∴ There exists an identity and inverses

∴ G/N is a group
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Quotient Groups

Quotient Group Example: N =
〈
r 2
〉
⊂ D8

From before we have:

1 N =
〈
r 2
〉
=

{
r 2, r 4, r 6, e

}
2 f

〈
r 2
〉
=

{
fr 2, fr 4, fr 6, f

}
3 r

〈
r 2
〉
=

{
r 3, r 5, r 7, r

}
4 fr

〈
r 2
〉
=

{
fr 3, fr 5, fr 7, fr

}
Thus we get

D8 = N ∪ fN ∪ rN ∪ frN

Composition Table for D8/N:
(Below an element g represents the coset gN)

◦ e r f fr

e e r f fr
r r r2 rf rfr
f f fr e r
fr fr fr2 frf frfr
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Composition Table for D8/N:
(Below an element g represents the coset gN)

◦ e r f fr

e e r f fr
r r r2 rf rfr
f f fr e r
fr fr fr2 frf frfr

Rewrite each element in the table so that it
is in the form r k or fr k , then identify which
coset it’s in.
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Thus we get

D8 = N ∪ fN ∪ rN ∪ frN

Composition Table for D8/N:
(Below an element g represents the coset gN)

◦ e r f fr

e e r f fr
r r e fr f
f f fr e r
fr fr f r e

Abelian group with all elements of order 2.
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Quotient Groups

Quotient Group Example: N =
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1 N =
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Thus we get

D8 = N ∪ fN ∪ rN ∪ frN

Composition Table for D8/N:
(Below an element g represents the coset gN)

◦ e r f fr

e e r f fr
r r e fr f
f f fr e r
fr fr f r e

Abelian group with all elements of order 2.

D8/N ∼= Z2 ⊕ Z2
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Quotient Groups

ϕ : D8 −→ Z2 ⊕ Z2

ϕ : D8 → Z2 ⊕ Z2

ϕ(r) = (0, 1)

ϕ(f ) = (1, 0)

ϕ(r 2k f ) =

(1, 2k) ≡ (1, 0)

ϕ(fr−2k) =

(1,−2k) ≡ (1, 0)

ϕ(r 2k+1f ) =

(1, 2k + 1) ≡ (1, 1)

ϕ(fr−2k−1) =

(1,−2k − 1) ≡ (1, 1)

ϕ(f l r k) = (l , k) ≡ (0, 0) implies l and k are both even

ker ϕ =
〈
r 2
〉

We will show, eventually, that this is why D8/
〈
r 2
〉 ∼= Z2 ⊕ Z2
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Quotient Groups

Normal Subgroups are Kernels

Theorem

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism.

Proof.

1 Define ϕ(g) = gN in G/N

2 ∀n ∈ N : ϕ(n) = nN = eN, so N ⊆ ker ϕ

3 ∀k ∈ ker ϕ : ϕ(k) = kN = eN, thus k = ek ∈ N and ker ϕ ⊆ N

4 ∴ N = ker ϕ
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First Isomorphism Theorem for Groups

Table of Contents

1 Cosets - Again

2 Normal Subgroups
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First Isomorphism Theorem for Groups

First Isomorphism Theorem

Theorem

If ϕ : G → G is a surjective homomorphism with kernel K = ker ϕ, then G/K ∼= G .
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First Isomorphism Theorem for Groups

Examples

ϕ : D8 → Z2 ⊕ Z2

Define ϕ(f l r k) = (l , k) (mod 2), then from before ker ϕ =
〈
r 2
〉
and

D8/ker ϕ ∼= Z2 ⊕ Z2. This agrees with the conclusion of the First Isomorphism
Theorem.

ϕ : Z → Zn

If we define ϕ(z) = z (mod n), then the kernel will be ker ϕ = nZ since those are
precisely the numbers equal to zero modulo n. The First Isomorphism Theorem tells
us then that Z/nZ ∼= Zn.
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First Isomorphism Theorem for Groups

Null Space

T : Z2 → Z2

T (v⃗) =

(
1 3
2 6

)(
x
y

)
=

(
x + 3y
2x + 6y

)

T =

(
1 3
2 6

)
∼

(
1 3
0 0

)
ker T = Null T =

〈(
−3
1

)〉
Col T =

〈(
1
2

)〉
∼= Z2/ker T =

{(
z
0

)
+ ker T

∣∣∣∣z ∈ Z
}
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First Isomorphism Theorem for Groups

First Isomorphism Theorem Proof

Proof.

ϕ : G → G a surjective homomorphism

K = ker ϕ

ϕ(gK) = ϕ(g)

ϕ(g1K) = ϕ(g2K) implies ϕ(g1) = ϕ(g2)

eG = ϕ(g2)
−1ϕ(g1) = ϕ(g−1

2 g1)

g−1
2 g1 ∈ K and g1K = g2K

∴ ϕ is injective and thus an isomorphism

Why didn’t we have to show ϕ is surjective?
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Quotient Structures
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3 Quotient Groups
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Quotient Structures

Modular Equivalence and Arithmetic

n > 0 an element of Z

a ≡ b (mod n) if and only if n|(a− b)

Theorem: If a ≡ b (mod n) and c ≡ d (mod n), then

1 a± c ≡ b ± d (mod n)
2 ac ≡ bd (mod n)

Zn
∼= Z/nZ = {a+ nZ|a ∈ Z}
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Quotient Structures

Polynomial Equivalence and Arithmetic

n(x) ̸= 0 an element of F [x ]

a(x) ≡ b(x) (mod n(x)) if and only if n(x)|(a(x)− b(x))

Theorem: If a(x) ≡ b(x) (mod n(x)) and c(x) ≡ d(x) (mod n(x)), then

1 a(x)± c(x) ≡ b(x)± d(x) (mod n(x))
2 a(x)c(x) ≡ b(x)d(x) (mod n(x))

F [x ]/ ⟨n(x)⟩ = {a(x) + ⟨n(x)⟩|a(x) ∈ F [x ]}
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Quotient Structures

Ideals and Quotient Rings

I an (two-sided) ideal in R

a ≡ b (mod I ) if and only if a− b ∈ I

Theorem: If a ≡ b (mod I ) and c ≡ d (mod I ), then

1 a± c ≡ b ± d (mod I )
2 ac ≡ bd (mod I )

Quotient Ring R/I = {r + I |r ∈ R}
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Quotient Structures

First Isomorphism Theorem for Rings

ϕ : R → S a surjective homomorphism

K = ker ϕ is an ideal

R/K is a ring

R/K ∼= S

I is an ideal of R if and only if it is the kernel of a homomorphism
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Quotient Structures

Normal Subgroups and Quotient Groups

N a normal subgroup in (G , ·)

a ≡ b (mod N) if and only if b−1a ∈ N

Theorem: If a ≡ b (mod N) and c ≡ d (mod N), then

1 ac ≡ bd (mod N)

Quotient Group G/N = {gN|g ∈ G}

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 39 / 44



Quotient Structures

Normal Subgroups and Quotient Groups

N a normal subgroup in (G , ·)
a ≡ b (mod N) if and only if b−1a ∈ N

Theorem: If a ≡ b (mod N) and c ≡ d (mod N), then

1 ac ≡ bd (mod N)

Quotient Group G/N = {gN|g ∈ G}

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 39 / 44



Quotient Structures

Normal Subgroups and Quotient Groups

N a normal subgroup in (G , ·)
a ≡ b (mod N) if and only if b−1a ∈ N

Theorem: If a ≡ b (mod N) and c ≡ d (mod N), then

1 ac ≡ bd (mod N)

Quotient Group G/N = {gN|g ∈ G}

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 39 / 44



Quotient Structures

Normal Subgroups and Quotient Groups

N a normal subgroup in (G , ·)
a ≡ b (mod N) if and only if b−1a ∈ N

Theorem: If a ≡ b (mod N) and c ≡ d (mod N), then

1 ac ≡ bd (mod N)

Quotient Group G/N = {gN|g ∈ G}

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 39 / 44



Quotient Structures

Normal Subgroups and Quotient Groups

N a normal subgroup in (G , ·)
a ≡ b (mod N) if and only if b−1a ∈ N

Theorem: If a ≡ b (mod N) and c ≡ d (mod N), then

1 ac ≡ bd (mod N)

Quotient Group G/N = {gN|g ∈ G}

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 39 / 44



Quotient Structures

First Isomorphism Theorem for Groups

ϕ : G → G a surjective homomorphism

K = ker ϕ is a normal subgroup

G/K is a group

G/K ∼= G

N is a normal subgroup of G if and only if it is the kernel of a homomorphism

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 40 / 44



Quotient Structures

First Isomorphism Theorem for Groups

ϕ : G → G a surjective homomorphism

K = ker ϕ is a normal subgroup

G/K is a group

G/K ∼= G

N is a normal subgroup of G if and only if it is the kernel of a homomorphism

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 40 / 44



Quotient Structures

First Isomorphism Theorem for Groups

ϕ : G → G a surjective homomorphism

K = ker ϕ is a normal subgroup

G/K is a group

G/K ∼= G

N is a normal subgroup of G if and only if it is the kernel of a homomorphism

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 40 / 44



Quotient Structures

First Isomorphism Theorem for Groups

ϕ : G → G a surjective homomorphism

K = ker ϕ is a normal subgroup

G/K is a group

G/K ∼= G

N is a normal subgroup of G if and only if it is the kernel of a homomorphism

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 40 / 44



Quotient Structures

First Isomorphism Theorem for Groups

ϕ : G → G a surjective homomorphism

K = ker ϕ is a normal subgroup

G/K is a group

G/K ∼= G

N is a normal subgroup of G if and only if it is the kernel of a homomorphism

C. F. Rocca Jr. (WCSU) Quotients and Homomorphisms 40 / 44



Quotient Structures

Vector Spaces and Linear Transformations

V and V vector spaces

T : V → V a linear transformation (T (av⃗ + bw⃗) = aT (v⃗) + bT (w⃗))

K = ker T = Null T is a subspace of V

v⃗ ≡ w⃗ (mod K) if and only if v⃗ − w⃗ ∈ K

Theorem: If a⃗ ≡ b⃗ (mod K) and c⃗ ≡ d⃗ (mod K), then

1 xa⃗+ y c⃗ ≡ xb⃗ + y d⃗ (mod K )

Quotient Space V /K = {v⃗ + K |v⃗ ∈ V } ∼= Col T ⊆ V

Every null space/kernel is a subspace and any subspace can be a null space/kernel
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Quotient Structures

Quotient Structures

S an algebraic structure with some set of operations {∗s}

Equivalence Relation a ∼ b defined on S

If the relation respects the operations on S , i.e. a ∼ b and c ∼ d implies
a ∗s c ∼ b ∗s d , then
Quotient Structure S/ ∼, the set of equivalence classes, has the same sort of
structure as S
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Quotient Structures

First Isomorphism Theorem

S and S algebraic structures with some set of operations

ϕ : S → S a function respecting the operations in S and S

K = ker ϕ is a substructure of S

S/K ∼= ϕ(S) ⊆ S

There is a class of substructures of S that are all possible kernels
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