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Definition of Cosets

Given a group G, subgroup H, and element g € G,
is a left coset of H and

gH = {gh|h € H}
is a right coset of H.

Hg = {hg|h € H}
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is a left coset of H and

Definition of Cosets
Given a group G, subgroup H, and element g € G,

gH = {gh|h € H}
is a right coset of H.

Hg = {hg|h € H}

Given a group G and subgroup H, if for all g € G,

A\

then we say that H is a normal subgroup of G.

gH = Hg,
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Z = {0, £1, 42, ..
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Z ={0,£1,42,.. .}

® 37 ={0,43,46,49,...}
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@ 37 ={0,43,46,49,...}
@ 1+3Z={1,-2,4,-5,7,...}
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@ 1+3Z=1{1,-2,4,-57,..}
@ 2+3Z=1{2-1,5-438,...}
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Normal Subgroups

Given a group G and subgroup H, if for all g € G,

gH = Hg,

then we say that H is a normal subgroup of G.

Example: <r2> C Dg

o (rP)y={r’r"r’e}
rk <r > {r2+k 4+k r6+ k} _ <r2> r
f<r2>:{fr | fr*, fr® ,f}
(rPYF=A{rPf i 0 F} = {f° P, F}
Ds = <r2> U r<r2> U f<r2> U rf<r2>
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o Nemansugowes
Normal Subgroups

Given a group G and subgroup H, if for all g € G,

gH = Hg,
then we say that H is a normal subgroup of G.
Example: (r) C Dg

@ (r)= {r,rZ,r S rr ,r7,e}

o f(ry={fr fr* f f* fr* f° fr' f}
@ Dg=(r)Uf(r)
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Normal Subgroups
Given a group G and subgroup H, if for all g € G,

then we say that H is a normal subgroup of G.
Example: (2) C Zg

gH = Hg,
@ (2) ={2,4,6,0}

@ 1+(2)={3571}=(2)+1

® Zy=(2) U(1+(2))
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Normal Subgroups
Given a group G and subgroup H, if for all g € G,

gH = Hg,
then we say that H is a normal subgroup of G.
Non-Example: (f) C Dg
o (f)={f,e}

@ r(fy={rf,r}

o (fyr={fr,ry={r"f,r} #r(f)
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Results on Normal Subgroups

If G is an abelian group, then all subgroups are normal. I
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Results on Normal Subgroups

If G is an abelian group, then all subgroups are normal. I
If G is a finite group and a subgroup H has index 2, then H is normal. I
~ C.F.RoccalJr. (WCSU)
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Coset Properties

Given a group G, subgroup H C G, and elements a,b € G:
Q |H| = |aH],
@ |aH| = |bH
@ aH = bH or aH N bH = (), and
@ aH = bH if and only if b*a € H.

7

From the previous theorem, given a group G and subgroup H C G, the cosets of H
partition G, e.g. for some set of gi € G

UesH=¢

and giH N giH = () when | # j.

O «F = z wace
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Index 2 Implies Normal Proof

@ G a group, H a subgroup, and [G : H] =2

O
~ C.F.Roccalr. (WCSU)
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Index 2 Implies Normal Proof

@ G a group, H a subgroup, and [G : H] =2
@ gcGandg¢ H

O
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Index 2 Implies Normal Proof

@ G a group, H a subgroup, and [G : H] =2
@ geGandg¢d H
@ gHNH=0and G=gHUH
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Index 2 Implies Normal Proof

@ G a group, H a subgroup, and [G : H] =2
@ geGandg¢d H

@ gHNH=0and G=gHUH

@ gH=G\H

S Guotients and Homomorphisms



Index 2 Implies Normal Proof

G a group, H a subgroup, and [G : H] =2
geGandgdg H

gHNH=0and G=gHUH
gH=G\H

HgNH=0and G=HgUH
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Index 2 Implies Normal Proof

@ G a group, H a subgroup, and [G : H] =2
@ geGandg¢d H

@ gHNH=0and G=gHUH

@ gH=G\H

@ HgNH=0and G=HgUH

@ Hg=G\H
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Index 2 Implies Normal Proof

G a group, H a subgroup, and [G : H] =2
geGandgdg H

gHNH=0and G=gHUH
gH=G\H

HgNH=0and G=HgUH

Hg =G\ H

..8H = Hg
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Results on Normal Subgroups
If G is an abelian group, then all subgroups are normal. I
If G is a finite group and a subgroup H has index 2, then H is normal. I
Let G be a group with subgroup N, then N is normal if and only if for all g € G,
gNg=! = N.
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gNg—! = N Proof

@ G a group, N normal
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gNg—! = N Proof

@ G a group, N normal
@ gN=Ng, Vge GV € NIm € N: gny = mg (e.g. fr= r~if in D)
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gNg—! = N Proof

@ G a group, N normal
@ gN = Ng,Vg € GVni € NIny € N : gy = mg (e.g. fr = r~'f in D,)
@ ghg ! = {gngilyn € N}
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gNg—! = N Proof

@ G a group, N normal

@ gN = Ng,Vg € GVni € NIny € N : gy = mg (e.g. fr = r~'f in D,)
@ ghg ! = {gng_1|n € N}

@ gmg '=mgg t=meN,sogNg 'CN
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gNg—! = N Proof

G a group, N normal
gN = Ng, Vg€ GYm € N3ny € N : gm = mg (e.g. fr=r"'f in D,)
gNg=t = {gng_1|n € N}

gmg ' =mgg '=meN, sogNg ' CN
1

But, the previous steps are reversible, no = nogg ! = gmg !, so N C ghg ™~
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gNg—! = N Proof

@ G a group, N normal
@ gN = Ng,Vg € GVni € NIny € N : gy = mg (e.g. fr = r~'f in D,)
@ ghg ! = {gng_1|n € N}
@ gmg l=mgg '=meN,sogNg ' CN
@ But, the previous steps are reversible, no = mgg ! = gmg !, so N C ghig~!
@ . gNg'l=N
DJ
o T = = T wace
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gNg ! = N Proof Continued

@ Gagroup,Vg € G: gNg ' =N

v,
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gNg ! = N Proof Continued

@ Gagroup,Vge G: ghg ' =N
@ Vg e GVn, € Ndn, € N:gnlg’lan
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gNg ! = N Proof Continued

@ Gagroup, Vg€ G: gNg ' =N
@ Vge GVm e NIn, e N : gnlg_1 =n
0 gm = mg
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gNg ! = N Proof Continued

@ Gagroup, Vg€ G: gNg ' =N
@ Vge GVm e NIn, e N : gnlg_1 =n
0 gm = mg

@ . gN = Ng and N is normal
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F{7)f={ff ref }
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Example and Non-Example in D,

F{7)f={ff ref }
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Example and Non-Example in D,

f<ﬁ>f

{frzf, fef}

()= ()

o = = ] T 9an
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Example and Non-Example in D,

F{7)f={ff ref }
= ()

r{fyr’ = {rfr3, rer3}

= = = HA
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Example and Non-Example in D,

F{7)f={ff ref }
= ()

r{fyr’ = {rfr3,rer3}
={rf,e} = {rzf,e}

= = = HA
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Example and Non-Example in D,

F{7)f={ff ref }
= ()

r{fyr’ = {rfr3, rer3}

={rf,e} = {rzf,e}
# (f)

= = = HA
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Example and Non-Example in D,

F{7)f={ff ref }
= ()

r{fyr’ = {rfr3,rer3}
={rf,e} = {rzf,e}
# (f)

(But, {r*f, e}, is another subgroup of order 2.)
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Kernels are Normal Subgroups

Given a homomorphism ¢ : G — G, the kernel of ¢ is a normal subgroup. \
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Kernels are Normal Subgroups
Given a homomorphism ¢ : G — G, the kernel of ¢ is a normal subgroup. l
@ k,k' € kergpand g € G
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o Nemansugowes
Kernels are Normal Subgroups
Given a homomorphism ¢ : G — G, the kernel of ¢ is a normal subgroup. l
@ k,k' € kerpand g € G
@ @(kk') = ¢(k)p(K') = egeg = e
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o Nemansugowes
Kernels are Normal Subgroups
Given a homomorphism ¢ : G — G, the kernel of ¢ is a normal subgroup. l
@ k,k' € kerpand g € G
® ¢(kk') = p(k)p(k') = egeg = eg
@ p(k)=o(k) " =eg
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o Nemansugowes
Kernels are Normal Subgroups
Given a homomorphism ¢ : G — G, the kernel of ¢ is a normal subgroup. l
@ k,k' € kerpand g € G
® ¢(kk') = p(k)p(k') = egeg = eg
0 p(k)=¢(k) ' =eg
@ .. ker ¢ is a subgroup
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o Nemansugowes
Kernels are Normal Subgroups
Given a homomorphism ¢ : G — G, the kernel of ¢ is a normal subgroup. l
@ k,k' € kerpand g € G
® ¢(kk') = p(k)p(k') = egeg = eg
0 p(k)=¢(k) ' =eg
@ . ker ¢ is a subgroup

® ¢(gkg™?)

P(8)p(k)p(g) " = ¢(g)egd(g) "

:ea
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o Nemansugowes
Kernels are Normal Subgroups
Given a homomorphism ¢ : G — G, the kernel of ¢ is a normal subgroup.
@ k,k' € kerpand g € G
® ¢(kk') = p(k)p(k') = egeg = eg
0 p(k)=¢(k) ' =eg
@ . ker ¢ is a subgroup

© ¢(gkg™") = d(g)o(k)d(g) " = dlg)ecd(g) ™! = eg
@ .. g(ker ¢)g~' = ker ¢ and ker ¢ is normal

Quotients and Homomorphisms
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Quotients and Normal Subgroups
If G is a group and N is a normal subgroup, then

G/N = {gN|g € G}
is a group with arithmetic defined by (gN)(hN) = (ghN).
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Coset Properties

Given a group G, subgroup H C G, and elements a,b € G:
Q [H| = aH|,

Q |aH| = [bH],

@ aH = bH or aH N bH = (), and

@ aH = bH if and only if b*a € H.
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Quotients and Normal Subgroups Proof

@ g,he G and ni,np € N and N is normal

DJ
~ C.F.RoccalJr. (WCSU)
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Quotients and Normal Subgroups Proof
@ g.he G and ni,n € N and N is normal
@ gm € gN and hny € hN

D)
~ C.F.RoccalJr. (WCSU)
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Quotients and Normal Subgroups Proof

@ g.he G and ni,n € N and N is normal
@ gn € gN and hn, € hN
@ gnihny = ghnsny € ghN for some n3 € N
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Quotients and Normal Subgroups Proof

o awerencrows
(Part I Closure and Associativity.
@ g.he G and ni,n € N and N is normal
@ gn € gN and hn, € hN
@ gnihny = ghnzny € ghN for some n3 € N
@ . We get closure

Quotients and Homomorphisms



Quotients and Normal Subgroups Proof

@ g.he G and ni,n € N and N is normal
@ gn € gN and hn, € hN
@ gnihny = ghnzny € ghN for some n3 € N
@ . We get closure
@ Associativity is “inhereted” from G
El)
or <& = = : 9ace
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Quotients and Normal Subgroups Proof

@ g,hg',h € G with gN =g'N and hN = h'N

DJ
~ C.F.Roccalr. (WCSU)

Quotients and Homomorphisms




Quotients and Normal Subgroups Proof
@ g,h,g',h" € G with gN =g'N and hN = ' N
@ gl =meNandh*H=meN

D)
~ C.F.Roccalr. (WCSU)

Quotients and Homomorphisms




Quotients and Normal Subgroups Proof

@ g,h,g',h" € G with gN =g'N and hN = ' N
@ glg/=meNandh'H =meN
@ (gh) Yg'h)=h'g tg’h =htmh =h hns=mns €N

Quotients and Homomorphisms



Quotients and Normal Subgroups Proof

@ g,h,g',h" € G with gN =g'N and hN = ' N

@ glg/=meNandh'H =meN

@ (gh)*(g'h)=h"tg'g’h =htmh =h"*h'ny = mns € N
@ ghN =g'h'N

S Guotients and Homomorphisms



Quotients and Normal Subgroups Proof

@ g,h,g',h" € G with gN =g'N and hN = ' N
@ glg/=meNandh'H =meN
@ (gh)*(g'h)=h"tg'g’h =htmh =h"*h'ny = mns € N
@ ghN =g'h'N
@ .. (gN)(hN) = ghN is well defined
D)
o = = = RN
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Quotients and Normal Subgroups Proof

@ g¢cG

DJ
~ C.F.RoccalJr. (WCSU)

Quotients and Homomorphisms




Quotients and Normal Subgroups Proof

@ geG
@ (gN)(eN) = geN = gN

DJ
~ C.F.RoccalJr. (WCSU)

Quotients and Homomorphisms




Quotients and Normal Subgroups Proof
@ geG
@ (gN)(eN) = geN = gN
® (gN)(g7'N)=gg 'N=eN=N

D)
~ C.F.RoccalJr. (WCSU)

Quotients and Homomorphisms




Quotients and Normal Subgroups Proof

@ geG
@ (gN)(eN) = geN = gN
® (gN)(g 'N)=gg 'N=eN=N

@ .. There exists an identity and inverses

D)
~ C.F.RoccalJr. (WCSU)
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Quotients and Normal Subgroups Proof

@ geG
@ (gN)(eN) = geN = gN
© (gN)(g7'N)=gg 'N=eN=N
@ . There exists an identity and inverses
@ . G/Nis a group
El)
Or «Fr «=>» <> ET DAl

D EEEIIEE Quotients and Homomorphisms [T



. ot
Quotient Group Example: N = <r2> C Dg

From before we have:

QO N= <r2> = {r27 r47r6,e}
Q () ={f " i f}

Q r<r2> = {r3,r5 r'or}

Q fr(r)={f f° f fr}
Thus we get

Dg = NUfNUTrNU frN

Quotients and Homomorphisms



. ot
Quotient Group Example: N = <r2> C Dg

From before we have: Composition Table for Dg/N:
QO N= <r2> = {r27 r*rS, e} (Below an element g represents the coset glV)
{2y = {fr* fr* fo, f
g r<<r2>>— «J{L/r3 ol r} } ole r Ff
) Ll ele r f fr
Q fr<r>:{fr,fr,fr,fr} e A
Thus we get flf fr e r

fr| fr fr2 frf frfr
Dg = NUfNUTrNU frN

ECEEEEEEE  Quotients and Homomorphisms (ST



. ot
Quotient Group Example: N = <r2> C Dg

From before we have: Composition Table for Dg/N:
o N= <r2> = {r27 r*rS, e} (Below an element g represents the coset glV)
Q () ={f " i f}
Q r(r)y={rrr,r}
Q fr{ry={ff fr' fr}
Thus we get

ol e r f fr
ele r f fr
r|ir r rf rfr
f|f fr e r

fr| fr fr2 frf frfr

Dg = NUfNUTrNUfrN

Rewrite each element in the table so that it
is in the form r* or fr*, then identify which
coset it's in.
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. ot
Quotient Group Example: N = <r2> C Dg

From before we have: Composition Table for Dg/N:
o N= <r2> — {r27 r*rS, e} (Below an element g represents the coset glV)
Q () ={f " i f}

N ol e r f fr
© r()= (7). e
Q fr(r’) = {f, fr*, fr', fr} rir e fr f
Thus we get FlfF e r

fr| fr fr2 frf frfr
Dg = NUfNUTrNUfrN

Rewrite each element in the table so that it
is in the form r* or fr*, then identify which
coset it's in.

ECEEEEEEEE  Quotients and Homomorphisms (DT



. ot
Quotient Group Example: N = <r2> C Dg

From before we have: Composition Table for Dg/N:
o N= <r2> = {r27 r*rS, e} (Below an element g represents the coset glV)
Uy = {f fr* 75 F
g r<<r2>>— Er3 ol r} / ole r f fr
] Ll ele r f fr
0fr<r>:{fr,fr,fr,fr} rlr e f f
Thus we get fl\f fr e

frifr £ r e
Dg = NUfNUTrNUfrN

Rewrite each element in the table so that it
is in the form r* or fr*, then identify which
coset it's in.

ECEEEEEEEE  Quotients and Homomorphisms (DT



. ot
Quotient Group Example: N = <r2> C Dg

From before we have: Composition Table for Dg/N:
o N= <r2> = {r2, r*rS, e} (Below an element g represents the coset glV)
£(r*) = {f? fr* i f
g r<<r2>>:§r3 fS r7 r} } ° ‘ € ! f fr
] ’3 ’5 ’ ; el e f fr
Q fr(r’)y={f i f' fr} rlr e #
Thus we get flf fr e

r
frifr f r e
Dg=NUNUrNUfrN

Abelian group with all elements of order 2.
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Quotient Group Example: N = <r2> C Dg

From before we have:
Q N={(r*)={rr"1"e}
Q 1 (r*)={f " f°f}
Q r <r2> = {r37 e, r}
Q fr(r*)={f " f' fr}
Thus we get

Composition Table for Dg/N:

(Below an element g represents the coset glV)

Dg=NUNUrNU frN

o‘e r f fr
el e f fr
rir e fr
fl f fr e

r
frifr f r e

Abelian group with all elements of order 2.

Quotients and Homomorphisms

Dg/N%’ZQ@Zz



o awerencrows
¢ Dg — Zo P 7o
@ ¢:Dg — Zo D 7o

Quotients and Homomorphisms



- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Dg— 7ZoDZo

° 4(r)=(0.1)

Quotients and Homomorphisms



- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Dg — 7o D 7o
® o(r)=(0,1)
@ ¢(f) =(1,0)

Quotients and Homomorphisms



- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Dg— 7ZoDZo
® ¢(r)=(0,1)

® ¢(f) =(1,0)

@ ¢(r’f) =

ECEEEEEREEE  Guotients and Homomorphisms (DT



- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Dg— 7ZoDZo

@ ¢(r)=(0,1)

@ ¢(f) =(1,0)

@ o(r**f) = (1,2k) = (1,0)

ECEEEEEREEE  Guotients and Homomorphisms (DT



- ceeriene Grours [
¢:D8—>Z2®ZQ

& :Dg — Zo® 7o
)=1(0,1)

f)=(1,0)

r?*f) = (1,2k) = (1,0)
o(fr~ 2k)

(*]
[*]
@ 0
@ ¢
*]

o(r
(
(
¢(
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- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Dg— 7ZoDZo

@ ¢(r)=(0,1)

@ ¢(f) =(1,0)

@ o(r**f) = (1,2k) = (1,0)
@ o(fr ) =(1,-2k) = (1,0)

= ) (€3
ECEEEEEREEE  Guotients and Homomorphisms (DT



- ceeriene Grours [
¢:D8—>Z2®ZQ

F‘)'Dg%ZQq—‘ZQ

o

@ ¢(r)=1(0,1)

@ ¢(f) =(1,0)

@ o(r**f) = (1,2k) = (1,0)
@ o(fr k) =(1,-2k) = (1,0)
° O(r2k+1 )

ECEEEEEEEE  Guotients and Homomorphisms [T



- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Ds — 7o D Zo

® ¢(r) =(0,1)

® ¢(f) =(1,0)

@ o(r*f) = (1,2k) = (1,0)

@ ¢(fr2) = (1,—2k) = (1,0)
0 o(r**f) = (1,2k +1) = (1,1)

= ) (€3
ECEEEEEEEE  Guotients and Homomorphisms [T



- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Ds — 7o D Zo

® 3(r)=(0,1)

® ¢(f) = (1,0)

@ ¢(r**f) = (1,2k) = (1,0)

@ ¢(fr2) = (1,—2k) = (1,0)
0 o(r**f) = (1,2k +1) = (1,1)
@ o(fr 1) =

= ) (€3
ECEEEEEEE  Quotients and Homomorphisms [T



- ceeriene Grours [
¢:D8—>Z2®ZQ

@ ¢:Ds — 7o D Zo

® 3(r)=(0,1)

® ¢(f) = (1,0)

@ o(r**f) = (1,2k) = (1,0)

@ o(fr k) =(1,-2k) = (1,0)

0 o(r**f) = (1,2k +1) = (1,1)

@ H(fr 2N =(1,-2k—-1)=(1,1)

= ) (€3
ECEEEEEEE  Quotients and Homomorphisms [T



- ceeriene Grours [
¢:D8—>Z2®ZQ

O'Dg%ZQLPZQ
r)=(0,1)
o(f) = (1,0)

o(
(
&(r?f) = (1,2k) = (1,0)
H(fr=2%) = (1, —2k) = (1,0)
(

H(

o(

-

H(r* ) = (1,2k +1) = (1,1)
frm2 1) = (1, -2k — 1) = (1,1)

#(f'r*) = (I, k) = (0,0) implies / and k are both even

®© ©6 6 6 6 6 o6 o
©-
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- ceeriene Grours [
¢:D8—>Z2®ZQ

¢:Dg — 7o @ 7o

¢(r) = (0,1)

o(f) = (1,0)

&(r¥f) = (1,2k) = (1,0)

H(fr=2%) = (1, —2k) = (1,0)

H(rP* ) = (1,2k +1) = (1,1)

p(fr2 1) = (1, -2k — 1) = (1,1)

#(f'r*) = (I, k) = (0,0) implies / and k are both even
ker ¢ = <r2>

1)
)

®© ©6 6 6 6 6 6 o o
-
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- ceeriene Grours [
¢:D8—>Z2®ZQ

& :Dg — Zo® 7o

#(r) =(0,1)

o(f) = (1,0)

&(r¥f) = (1,2k) = (1,0)
H(fr=2%) = (1, —2k) = (1,0)
o(

o(

)

-

H(r* ) = (1,2k +1) = (1,1)
frm2 1) = (1, -2k — 1) = (1,1)
#(f'r*) = (I, k) = (0,0) implies / and k are both even
ker ¢ = <r >
We will show, eventually, that this is why Ds/ <r2> > 7o D 7o

ECEEEEEEE  Quotients and Homomorphisms [T



Normal Subgroups are Kernels

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism. I
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Normal Subgroups are Kernels

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism. I
© Define ¢(g) = gN in G/N

~ C.F.RoccalJr. (WCSU)

Quotients and Homomorphisms




Normal Subgroups are Kernels
If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism. I
@ Define ¢(g) =gN in G/N
Q Vne N: ¢(n)=nN=eN, so N C ker¢
~ C.F.Roccalr. (WCSU)

Quotients and Homomorphisms




Normal Subgroups are Kernels
If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism. I
@ Define ¢(g) =gN in G/N
Q Vne N: ¢(n)=nN=eN, so NC ker¢p
© Vk c kerd: ¢(k) = kN = eN, thus k = ek € N and ker ¢ C N
~ C.F.Roccalr. (WCSU)

Quotients and Homomorphisms




Normal Subgroups are Kernels

If G is a group and N is a normal subgroup, then N is the kernel of a homomorphism. I

@ Define ¢(g) =gN in G/N
Q Vne N: ¢(n)=nN=eN, so NC ker¢p

Q@ Vk € kerp: ¢p(k) = kN = eN, thus k = ek € N and kerp C N
Q . N=kero

Quotients and Homomorphisms



. FirstIsomorphism Theorem for Groups |
Table of Contents

@ First Isomorphism Theorem for Groups

Quotients and Homomorphisms



I i e ek
First Isomorphism Theorem

If$: G — G is a surjective homomorphism with kernel K = ker ¢, then G/K = G

Quotients and Homomorphisms



I i e ek
Examples

Theorem.

Define ¢(f'r*) = (I, k) (mod 2), then from before ker ¢ = (r*) and

Dg/ker ¢ = 7 & Z>. This agrees with the conclusion of the First Isomorphism

Quotients and Homomorphisms



Examples
Define ¢(f'r*) = (I, k) (mod 2), then from before ker ¢ = (r*) and
Dg/ker ¢ = 7 & Z>. This agrees with the conclusion of the First Isomorphism
Theorem.

us then that Z/nZ = Z,.

If we define ¢(z) = z (mod n), then the kernel will be ker ¢ = nZ since those are

precisely the numbers equal to zero modulo n. The First Isomorphism Theorem tells

v,

Quotients and Homomorphisms



Null Space
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Null Space

Quotients and Homomorphisms



Null Space

el o
TZez
* 0 ()= (%)
*7( 9~ o)
o ker T—nut 7= (7))
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First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism

Quotients and Homomorphisms



First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism
@ K = ker¢

Quotients and Homomorphisms



First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism
@ K = kero¢
® ¢(gK) = ¢(g)

Quotients and Homomorphisms



First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism
@ K = kero¢

° ¢(gK) = ¢(g)
9 §(g1K) = ¢(g2K) implies ¢(g1) = d(g2)

S Guotients and Homomorphisms




First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism
@ K = kero¢

° d(gK) = ¢(g)

0 d(g1K) = ¢(g:K) implies ¢(g1) = ¥(g2)
0 ez = d(g2) 'o(e1) = d(g; ‘&)

S Guotients and Homomorphisms

[} [ =

A C



First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism
@ K = kero¢

° 3(gk) = d(g)

® $(g1K) = ¢(g2K) implies ¢(g1) = ¢(g2)
0 eg = ¢(g2) o(&1) = (g '&1)

4] g2_1g1 € Kand g1t K = K

S Guotients and Homomorphisms



First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism
@ K = kero¢

° 3(gk) = d(g)

® $(g1K) = ¢(g2K) implies ¢(g1) = ¢(g2)
0 eg = ¢(g2) o(&1) = (g '&1)

() gz_lgl € K and g1t K = 2K

@ . & is injective and thus an isomorphism

S Guotients and Homomorphisms



First Isomorphism Theorem Proof

@ ¢: G — G a surjective homomorphism
@ K = kero¢

° 3(gk) = d(g)

#(g1K) = ¢(g2K) implies ¢(g1) = ¢(g2)
ez = d(g2) 'o(&1) = d(g; ‘&)

gz_lgl € Kand gt K = K

.. ¢ is injective and thus an isomorphism

Why didn’t we have to show ¢ is surjective?

S Guotients and Homomorphisms
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Table of Contents

© Quotient Structures
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N s
Modular Equivalence and Arithmetic

@ n > 0 an element of Z
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N s
Modular Equivalence and Arithmetic

@ n > 0 an element of Z

@ a= b (mod n) if and only if n|(a — b)

Quotients and Homomorphisms



N s
Modular Equivalence and Arithmetic

@ n >0 an element of Z
@ a= b (mod n) if and only if n|(a — b)

@ Theorem: If a= b (mod n) and ¢ = d (mod n), then

Quotients and Homomorphisms



N s
Modular Equivalence and Arithmetic

@ n >0 an element of Z
@ a= b (mod n) if and only if n|(a — b)

@ Theorem: If a= b (mod n) and ¢ = d (mod n), then
Q@ atc=b+d (modn)

Quotients and Homomorphisms



N s
Modular Equivalence and Arithmetic

@ n >0 an element of Z
@ a= b (mod n) if and only if n|(a — b)

@ Theorem: If a= b (mod n) and ¢ = d (mod n), then
Q@ atc=b+d (modn)

@ ac = bd (mod n)

Quotients and Homomorphisms



N s
Modular Equivalence and Arithmetic

@ n >0 an element of Z
@ a= b (mod n) if and only if n|(a — b)

@ Theorem: If a= b (mod n) and ¢ = d (mod n), then
Q@ atc=b+d (modn)

@ ac = bd (mod n)

@ Z, X Z/nZ ={a+ nZla €L}

Quotients and Homomorphisms



o Guoren stnicres |
Polynomial Equivalence and Arithmetic

@ n(x) # 0 an element of F[x]

Quotients and Homomorphisms



o Guoren stnicres |
Polynomial Equivalence and Arithmetic

@ n(x) # 0 an element of F[x]

@ a(x) = b(x) (mod n(x)) if and only if n(x)|(a(x) — b(x))

Quotients and Homomorphisms



Polynomial Equivalence and Arithmetic

@ n(x) # 0 an element of F[x]
@ a(x) = b(x) (mod n(x)) if and only if n(x)|(a(x) — b(x))
@ Theorem: If a(x) = b(x) (mod n(x)) and ¢(x) = d(x) (mod n(x)), then

= ) (€3
ECEEEEEEEEI  Quotients and Homomorphisms (N



Polynomial Equivalence and Arithmetic

@ n(x) # 0 an element of F[x]

@ a(x) = b(x) (mod n(x)) if and only if n(x)|(a(x) — b(x))

@ Theorem: If a(x) = b(x) (mod n(x)) and c(x) = d(x) (mod n(x)), then
Q a(x) £ c(x) = b(x) £ d(x) (mod n(x))

= ) (€3
ECEEEEEEE  Quotients and Homomorphisms (N



Polynomial Equivalence and Arithmetic

@ n(x) # 0 an element of F[x]

@ a(x) = b(x) (mod n(x)) if and only if n(x)|(a(x) — b(x))

@ Theorem: If a(x) = b(x) (mod n(x)) and c(x) = d(x) (mod n(x)), then
Q a(x) £ c(x) = b(x) £ d(x) (mod n(x))
Q a(x)c(x) = b(x)d(x) (mod n(x))

= ) (€3
ECEEEEEEE  Quotients and Homomorphisms (N



Polynomial Equivalence and Arithmetic

n(x) # 0 an element of F[x]

a(x) = b(x) (mod n(x)) if and only if n(x)|(a(x) — b(x))

Theorem: If a(x) = b(x) (mod n(x)) and ¢(x) = d(x) (mod n(x)), then
Q a(x) £ c(x) = b(x) £ d(x) (mod n(x))
Q a(x)c(x) = b(x)d(x) (mod n(x))

Fx]/ {n(x)) = {a(x) + (n(x))[a(x) € F[x]}

ECEEEEREE  Quotients and Homomorphisms [N



. Quotientstrucrures [
|deals and Quotient Rings

@ / an (two-sided) ideal in R
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. Quotientstrucrures [
|deals and Quotient Rings

@ / an (two-sided) ideal in R

@ a=b (mod /)ifandonlyifa—bel
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. Quotientstrucrures [
|deals and Quotient Rings

@ / an (two-sided) ideal in R

@ a=b (mod/)ifandonlyifa—bel

@ Theorem: If a=b (mod /) and ¢ = d (mod /), then
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. Quotientstrucrures [
|deals and Quotient Rings

@ / an (two-sided) ideal in R

@ a=b (mod/)ifandonlyifa—bel

@ Theorem: If a= b (mod /) and ¢ = d (mod [), then
Q@ atc=b+d (mod /)

Quotients and Homomorphisms



. Quotientstrucrures [
|deals and Quotient Rings

@ / an (two-sided) ideal in R

@ a=b (mod/)ifandonlyifa—bel

@ Theorem: If a= b (mod /) and ¢ = d (mod [), then
Q@ atc=b+d (mod /)

@ ac=bd (mod /)

Quotients and Homomorphisms



. Quotientstrucrures [
|deals and Quotient Rings

@ / an (two-sided) ideal in R

@ a=b (mod/)ifandonlyifa—bel

@ Theorem: If a= b (mod /) and ¢ = d (mod [), then
Q@ atc=b+d (mod /)

@ ac=bd (mod /)

@ Quotient Ring R/l ={r+I|r € R}

Quotients and Homomorphisms



o Guoren stnicres |
First Isomorphism Theorem for Rings

@ ¢: R — S a surjective homomorphism

Quotients and Homomorphisms



o Guoren stnicres |
First Isomorphism Theorem for Rings

@ ¢: R — S a surjective homomorphism
@ K = ker ¢ is an ideal
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o Guoren stnicres |
First Isomorphism Theorem for Rings

@ ¢: R — S a surjective homomorphism
@ K = ker ¢ is an ideal
@ R/K is aring

Quotients and Homomorphisms



First Isomorphism Theorem for Rings

@ ¢: R — S a surjective homomorphism
@ K = ker ¢ is an ideal

@ R/K is aring

@ R/IK=S

I Quotients and Homomorphisms [T



First Isomorphism Theorem for Rings

¢ : R — S a surjective homomorphism
K = ker ¢ is an ideal

R/K is a ring

R/K=S

I is an ideal of R if and only if it is the kernel of a homomorphism

ECEEEEEEE  Quotients and Homomorphisms [N



N s
Normal Subgroups and Quotient Groups

@ N a normal subgroup in (G, -)

Quotients and Homomorphisms



N s
Normal Subgroups and Quotient Groups

@ N a normal subgroup in (G, )

@ a=b (mod N) if and only if b *a € N

Quotients and Homomorphisms



N s
Normal Subgroups and Quotient Groups

@ N a normal subgroup in (G, )

@ a=b (mod N) ifand only if b lae N

@ Theorem: If a= b (mod N) and ¢ =d (mod N), then
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N s
Normal Subgroups and Quotient Groups

@ N a normal subgroup in (G, )

@ a=b (mod N) ifand only if b lae N

@ Theorem: If a= b (mod N) and c =d (mod N), then
Q@ ac = bd (mod N)

Quotients and Homomorphisms
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Normal Subgroups and Quotient Groups

@ N a normal subgroup in (G, )

@ a=b (mod N) ifand only if b lae N

@ Theorem: If a= b (mod N) and c =d (mod N), then
@ ac = bd (mod N)

@ Quotient Group G/N = {gN|g € G}
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@ ¢: G — G a surjective homomorphism
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@ ¢: G — G a surjective homomorphism

@ K = ker ¢ is a normal subgroup
@ G/K is a group
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First Isomorphism Theorem for Groups

@ ¢: G — G a surjective homomorphism
@ K = ker ¢ is a normal subgroup

@ G/K is a group

0 G/K=G
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First Isomorphism Theorem for Groups

¢ : G — G a surjective homomorphism
K = ker ¢ is a normal subgroup

G/K is a group

G/K=G

N is a normal subgroup of G if and only if it is the kernel of a homomorphism
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@ V and V vector spaces

Quotients and Homomorphisms



N s
Vector Spaces and Linear Transformations

@ V and V vector spaces

@ T:V — V alinear transformation (T (aV + bw) = aT (V) + bT(
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Vector Spaces and Linear Transformations

@ V and V vector spaces

@ T :V — V alinear transformation (T (aV + bw) = aT (V) + bT(w))
@ K =ker T = Null T is a subspace of V
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Vector Spaces and Linear Transformations

V and V vector spaces

T : V — V alinear transformation (T (aV + bw) = aT (V) + bT(w))
K = ker T = Null T is a subspace of V

Vv=w (mod K) if and only if V—w € K
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Vector Spaces and Linear Transformations

V and V vector spaces

T : V — V alinear transformation (T (aV + bw) = aT (V) + bT(w))
K = ker T = Null T is a subspace of V

Vv=w (mod K) if and only if V—w € K

Theorem: If #= b (mod K) and €= d (mod K), then
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Vector Spaces and Linear Transformations

V and V vector spaces
T : V — V alinear transformation (T (aV + bw) = aT (V) + bT(w))
K = ker T = Null T is a subspace of V
Vv=w (mod K) if and only if V—w € K
Theorem: If #= b (mod K) and €= d (mod K), then
Q@ xi+yé=xb+yd (mod K)
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Vector Spaces and Linear Transformations

V and V vector spaces
T : V — V alinear transformation (T (aV + bw) = aT (V) + bT(w))
K = ker T = Null T is a subspace of V
Vv=w (mod K) if and only if V—w € K
Theorem: If #= b (mod K) and €= d (mod K), then
Q@ xi+yé=xb+yd (mod K)
Quotient Space V/K = {V+ K|V € V} = Col TCV
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Vector Spaces and Linear Transformations

V and V vector spaces
T : V — V alinear transformation (T (aV + bw) = aT (V) + bT(w))
K = ker T = Null T is a subspace of V
Vv=w (mod K) if and only if V—w € K
Theorem: If #= b (mod K) and €= d (mod K), then
Q@ xi+yé=xb+yd (mod K)
Quotient Space V/K = {V+ K|V € V} = Col TCV

@ Every null space/kernel is a subspace and any subspace can be a null space/kernel
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Quotient Structures

@ S an algebraic structure with some set of operations {xs}
@ Equivalence Relation a ~ b defined on S

@ If the relation respects the operations on S, i.e. a ~ b and ¢ ~ d implies
a*s ¢ ~ bxsd, then
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Quotient Structures

@ S an algebraic structure with some set of operations {xs}

@ Equivalence Relation a ~ b defined on S

@ If the relation respects the operations on S, i.e. a~ b and ¢ ~ d implies
axs €~ bxsd, then

@ Quotient Structure S/ ~, the set of equivalence classes, has the same sort of
structure as S

S Quotients and Homomorphisms
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@ S and S algebraic structures with some set of operations

@ ¢: S — S afunction respecting the operations in S and S
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First Isomorphism Theorem

@ S and S algebraic structures with some set of operations
@ ¢: S — S afunction respecting the operations in S and S
@ K = ker ¢ is a substructure of S

@ S/K=¢(S)CS
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First Isomorphism Theorem

S and S algebraic structures with some set of operations
¢ : S — S a function respecting the operations in S and S
K = ker ¢ is a substructure of S

S/K=¢(S)CS

There is a class of substructures of S that are all possible kernels
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