Limits of Turing Machines

Dr. Chuck Rocca
roccac@wcsu.edu
http://sites.wcsu.edu/roccac

WESTERN

CONNECTICUT
STATE UNIVERSITY
MACRICOSTAS
SCHOOL OF ARTS
8 SCIENCES

Table of Contents

(1) Algorithms
(2) Decidable Languages
(3) Uncountability and Power Sets
4) Undecidable Languages
(5) Next Class
C. F. Rocca Jr. (WCSU)

Table of Contents

(1) Algorithms

(2) Decidable Languages
(3) Uncountability and Power Sets

44 Undecidable Languages
(5) Next Class

Algorithm

Definition

An algorithm is a computational process that is describable in terms of a Turing machine.

Connected Graphs Example

$\mathrm{M}=$ "On input $\langle G\rangle$, the string encoding of a graph G :
(0) Check that $\langle G\rangle$ is in the correct format
(1) Select the first node in G and mark it.
(2) Repeat the following until no new nodes are marked:
(3) For each node in G, mark it if is is attached by an edge to a node that is already marked.
(9) Scan all the nodes of G, if they are all marked, accept; otherwise reject."

Decidable Unions

Given two decidable languages L_{1} and L_{2} and corresponding Turing machines M_{1} and M_{2} the union of the languages can be decided by: $\mathrm{M}=$ "On input w :
(0) Check that w is in the correct format.
(1) Run M_{1} on w. If it accepts, accept.
(2) Run M_{2} on w. If it accepts, accept.
(3) Otherwise reject"

Recognizable Unions

Given two Turing recognizable languages L_{1} and L_{2} and corresponding Turing machines M_{1} and M_{2} the union of the languages can be recognized by:
$\mathrm{M}=$ "On input w :
(0) Check that w is in the correct format.
(1) Run M_{1} and M_{2} alternately on w step by step. If either accepts, accept.
(2) If both halt or reject, reject."

Decidable vs. Recognizable

Definition

A Language is Turning-decidable or simply decidable if some Turing machine decides it; the machine always reaches an accept or reject state. Given any word there is a TM that can tell if the word is or is not in the language.

Decidable vs. Recognizable

Definition

A Language is Turning-decidable or simply decidable if some Turing machine decides it; the machine always reaches an accept or reject state. Given any word there is a TM that can tell if the word is or is not in the language.

Definition

A Language is Turning-recognizable if some Turing machine recognizes it; in this case the machine reaches an accept state, reject state, or it may loop (fail to accept). There is a TM that accepts words in the language, but may fail to reach a verdict if a word is not in the language.

Decidable Intersections

Given two decidable languages L_{1} and L_{2} and corresponding Turing machines M_{1} and M_{2} the intersections of the languages can be decided by: $\mathrm{M}=$ "On input w :
(0) Check that w is in the correct format.
(1) Run M_{1} and M_{2} on w. If they both accept, accept.
(2) Otherwise reject"

Decidable Intersections

Given two decidable languages L_{1} and L_{2} and corresponding Turing machines M_{1} and M_{2} the intersections of the languages can be decided by: $\mathrm{M}=$ "On input w :
(0) Check that w is in the correct format.
(1) Run M_{1} and M_{2} on w. If they both accept, accept.
(2) Otherwise reject"

Why didn't we say "Run M_{1} and M_{2} alternately on w step by step?"

Decidable Complements

Given a decidable language L_{1} and corresponding Turing machine M_{1} the complement of the languages can be decided by:
$\mathrm{M}=$ "On input w :
(0) Check that w is in the correct format.
(1) Run M_{1} on w. If it accepts, reject.
(2) Otherwise accept"

Table of Contents

(1) Algorithms
(2) Decidable Languages
(3) Uncountability and Power Sets

4 Undecidable Languages
(5) Next Class

Deterministic Finite Automaton

Theorem

The set

$$
A_{D F A}=\{\langle B, w\rangle \mid B \text { is a DFA that accepts string } w\}
$$

is a decidable language. -

Deterministic Finite Automaton

$\mathrm{M}=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:
(0) Check the format of the input.
(1) Simulate B on input w.
(2) If the simulation ends in an accept state, accept; otherwise, reject."

Deterministic Finite Automaton

$\mathrm{M}=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:
(0) Check the format of the input.
(1) Simulate B on input w.
(2) If the simulation ends in an accept state, accept; otherwise, reject."

Deterministic Finite Automaton

$\mathrm{M}=$ "On input $\langle B, w\rangle$, where B is a DFA and w is a string:
(0) Check the format of the input.
(1) Simulate B on input w.
(2) If the simulation ends in an accept state, accept; otherwise, reject."

Machine $\langle B\rangle$

Nondeterministic Finite Automaton

Theorem

The set

$$
A_{N F A}=\{\langle B, w\rangle \mid B \text { is an NFA that accepts string } w\}
$$

is a decidable language.
$\mathrm{N}=$ "On input $\langle B, w\rangle$, where B is a NFA and w is a string:
(1) Convert B to a DFA C.
(2) Run M from the previous theorem on input $\langle C, w\rangle$.
(3) If the simulation ends in an accept state, accept; otherwise, reject."

Regular Expressions

Theorem

The set

$$
A_{R E X}=\{\langle B, w\rangle \mid B \text { is a regex that accepts string } w\}
$$

is a decidable language.
$\mathrm{P}=$ "On input $\langle B, w\rangle$, where B is a RegEx and w is a string:
(1) Convert B to a NFA C.
(2) Run N from the previous theorem on input $\langle C, w\rangle$.
(3) If the simulation ends in an accept state, accept; otherwise, reject."

Empty Languages

Theorem

The set

$$
E_{D F A}=\{\langle A\rangle \mid A \text { is a DFA and } L(A)=\emptyset\}
$$

is a decidable language.
$\mathrm{T}=$ "On input $\langle A\rangle$, the string encoding of DFA A :
(1) Select the start state in A and mark it.
(2) Repeat the following until no new states are marked:
(3) For each state in A, mark it if there is a transition from a marked state.
(9) Scan the accept states of A, if any are marked, reject; otherwise accept."

Equal Languages

Theorem

The set

$$
E Q_{D F A}=\{\langle A, B\rangle \mid A \text { and } B \text { are DFAs and } L(A)=L(B)\}
$$

is a decidable language.

- Note, DFAs are closed under unions, intersections, and compliments.
- Construct the symmetric difference of A and $B, C \equiv A X O R B$ or

$$
L(C)=(L(A) \cap \overline{L(B)}) \cup(\overline{L(A)} \cap L(B))
$$

- Check if C is empty using T from the previous theorem.

CFLs

Theorem

The set

$$
A_{C F G}=\{\langle G, w\rangle \mid G \text { is a CFG that generates the string } w\}
$$

is a decidable language.
$S=$ " On input $\langle G, w\rangle$, where G is a CFG and w is a string:
(1) Convert G to Chomsky Normal Form.
(2) List all derivations with $2 n-1$ steps, $n=|w|$; except for $\mathrm{n}=0$, then list derivations with one step. (Why $2 n-1$?)
(3) If w is generated, accept; otherwise reject."

CFLs

Theorem

The set

$$
E_{C F G}=\{\langle G\rangle \mid G \text { is a CFG and } L(G)=\emptyset\}
$$

is a decidable language.
$\mathrm{R}=$ "On input $\langle G\rangle$, the string encoding of CFG G :
(1) Mark the terminals in G.
(2) Repeat the following until no new variables get marked:
(3) Mark any variable A where $A \rightarrow U_{1} U_{2} \cdots U_{k}$ is in G and the U_{i} are all marked.
(9) If the start variable of G is not marked, accept; otherwise reject."

CFLs

Theorem

The set

$$
E Q_{C F G}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\}
$$

is not a decidable language.

CFLs

Theorem

The set

$$
E Q_{C F G}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\}
$$

is not a decidable language. (Proof held until after Chapter 5.)

CFLs

Theorem

The set

$$
E Q_{C F G}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\}
$$

is not a decidable language. (Proof held until after Chapter 5.)

- Recall, CFLs are not necessarily closed under intersections and complementation.

CFLs

Theorem

The set

$$
E Q_{C F G}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\}
$$

is not a decidable language. (Proof held until after Chapter 5.)

- Recall, CFLs are not necessarily closed under intersections and complementation.
- $L(G)=\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\}$

CFLs

Theorem

The set

$$
E Q_{C F G}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\}
$$

is not a decidable language. (Proof held until after Chapter 5.)

- Recall, CFLs are not necessarily closed under intersections and complementation.
- $L(G)=\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\}$
- $L(H)=\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\}$

CFLs

Theorem

The set

$$
E Q_{C F G}=\{\langle G, H\rangle \mid G \text { and } H \text { are CFGs and } L(G)=L(H)\}
$$

is not a decidable language. (Proof held until after Chapter 5.)

- Recall, CFLs are not necessarily closed under intersections and complementation.
- $L(G)=\left\{a^{m} b^{n} c^{n} \mid m, n \geq 0\right\}$
- $L(H)=\left\{a^{n} b^{n} c^{m} \mid m, n \geq 0\right\}$
- $L(G) \cap L(H)=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free by the pumping lemma

Hierarchy of Languages

Table of Contents

(1) Algorithms

2 Decidable Languages
(3) Uncountability and Power Sets

4 Undecidable Languages
(5) Next Class

Cardinality: Naive Definition

Definition

The cardinality of a set is the number of elements in the set and two sets have the same cardinality if they have the same number of elements.

$$
\begin{aligned}
A & =\{1,2,3,4,5\} \\
B & =\{a, b, c, d, e\} \\
C & =\{!, @, \#, \$, \%, \wedge\} \\
\mathbb{N} & =\{1,2,3,4, \ldots\} \\
\mathbb{Z} & =\{0, \pm 1, \pm 2, \pm 3, \ldots\} \\
\mathbb{Q} & =\{a / b \mid a, b \in \mathbb{Z} \text { and } b \neq 0\}
\end{aligned}
$$

Cardinality: Improved Definition

Definition

The cardinality of a finite set is the number of elements in the set. A set is infinite if there is a one-to-one correspondence between the set and a proper subset of the set. And, two sets have the same cardinality if there exists a one-to-one correspondence between their elements.
\mathbb{N} to $2 \mathbb{N}$
$\begin{array}{cr}\mathbb{N} \\ 1 \longrightarrow \\ & \mathbb{N} \\ 1\end{array}$

\mathbb{N} to $2 \mathbb{N}$

\mathbb{N} to $2 \mathbb{N}$

\mathbb{N} to $2 \mathbb{N}$

\mathbb{N} to $2 \mathbb{N}$

\mathbb{N} to $2 \mathbb{N}$

三
\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Z}

\mathbb{N}	\mathbb{Z}
$1 \longrightarrow$	0
$2 \longrightarrow$	1
$3 \longrightarrow$	2

\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Q}^{+}

$$
\begin{array}{ccccc}
1 & 2 & 3 & 4 & \cdots \\
1 / 2 & 3 / 2 & 5 / 2 & 7 / 2 & \cdots \\
1 / 3 & 2 / 3 & 4 / 3 & 5 / 3 & \cdots \\
1 / 4 & 3 / 4 & 5 / 4 & 7 / 4 & \cdots
\end{array}
$$

\mathbb{N} to \mathbb{Q}^{+}

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.7
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.74
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.741
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}	
1	$0.65395501314 \cdots$	
2	$0.73800613014 \cdots$	
3	$0.05050813247 \cdots$	
4	$0.10810350448 \cdots$	
5	$0.04587954758 \cdots$	
6	$0.66716666577 \cdots$	
7	$0.73243627345 \cdots$	
8	$0.27311930829 \cdots$	
9	$0.17177211903 \cdots$	
10	$0.45518277788 \cdots$	
\vdots	\vdots	

Cantor Diagonalization

\mathbb{N}	\mathbb{R}	
1	$0.65395501314 \cdots$	
2	$0.73800613014 \cdots$	New Number:
3	$0.05050813247 \cdots$	
4	$0.10810350448 \cdots$	
5	$0.04587954758 \cdots$	
6	$0.66716666577 \cdots$	
7	$0.73243627345 \cdots$	
8	$0.27311930829 \cdots$	
9	$0.17177211903 \cdots$	
10	$0.45518277788 \cdots$	
\vdots	\vdots	

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.741287
$$

New Number:$0.04587954758 \ldots$

$$
0.66716666577 \ldots
$$

$$
0.73243627345 \ldots
$$

$$
0.27311930829 \ldots
$$

$$
0.17177211903 \ldots
$$

$$
0.45518277788 \cdots
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.7412873
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.74128731
$$

$$
0.04587954758 \cdots
$$

$$
0.66716666577 \ldots
$$

$$
0.73243627345 \ldots
$$

$$
0.27311930829 \ldots
$$

$$
0.17177211903 \ldots
$$

$$
0.45518277788 \cdots
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.741287318
$$

$$
0.10010350440 \text {. }
$$

$$
0.66716666577 \ldots
$$

$$
0.73243627345 \ldots
$$

$$
0.27311930829 \ldots
$$

$$
0.17177211903 \ldots
$$

$$
0.45518277788 \cdots
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.7412873187 \ldots
$$

Cantor Diagonalization

\mathbb{N}	\mathbb{R}
1	$0.65395501314 \cdots$
2	$0.73800613014 \cdots$
3	$0.05050813247 \cdots$
4	$0.10810350448 \cdots$
5	$0.04587954758 \cdots$
6	$0.66716666577 \cdots$
7	$0.73243627345 \cdots$
8	$0.27311930829 \cdots$
9	$0.17177211903 \cdots$
10	$0.45518277788 \cdots$
\vdots	\vdots

New Number:

$$
x=0.7412873187 \ldots
$$

Avoiding 0's and 9's when replacing digits since $0.19999 \ldots=0.20000 \ldots$

Power Sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3,4,5, \ldots\} \\
\mathscr{P}(\mathbb{N}) & =\{\emptyset,\{1\},\{2,3\},\{4\},\{8\},\{7,19,83\},\{101,23,7\}, \ldots\}
\end{aligned}
$$

Power Sets

$$
\begin{aligned}
\mathbb{N} & =\{1,2,3,4,5, \ldots\} \\
\mathscr{P}(\mathbb{N}) & =\left\{s_{1}, s_{2}, s_{3}, s_{4}, s_{5} \ldots\right\}
\end{aligned}
$$

Power Sets

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$
- $1 \notin s_{1}$, then $1 \in X$

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$
- $1 \notin s_{1}$, then $1 \in X$
- $2 \in s_{2}$, then $2 \notin X$

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$
- $1 \notin s_{1}$, then $1 \in X$
- $2 \in s_{2}$, then $2 \notin X$
- $2 \notin s_{2}$, then $2 \in X$

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$
- $1 \notin s_{1}$, then $1 \in X$
- $2 \in s_{2}$, then $2 \notin X$
- $2 \notin s_{2}$, then $2 \in X$
- $3 \in s_{3}$, then $3 \notin X$

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$
- $1 \notin s_{1}$, then $1 \in X$
- $2 \in s_{2}$, then $2 \notin X$
- $2 \notin s_{2}$, then $2 \in X$
- $3 \in s_{3}$, then $3 \notin X$
- $3 \notin s_{3}$, then $3 \in X$

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$
- $1 \notin s_{1}$, then $1 \in X$
- $2 \in s_{2}$, then $2 \notin X$
- $2 \notin s_{2}$, then $2 \in X$
- $3 \in s_{3}$, then $3 \notin X$
- $3 \notin s_{3}$, then $3 \in X$
- etc.

Power Sets

Define a new set X as follows

$$
X=\left\{n \mid n \notin s_{n}\right\}
$$

Thus, if

- $1 \in s_{1}$, then $1 \notin X$
- $1 \notin s_{1}$, then $1 \in X$
- $2 \in s_{2}$, then $2 \notin X$
- $2 \notin s_{2}$, then $2 \in X$
- $3 \in s_{3}$, then $3 \notin X$
- $3 \notin s_{3}$, then $3 \in X$
- etc.

And therefore $\forall n: X \neq s_{n}$.

A Theorem on Power Sets

Theorem

Given a set S, the cardinality of $\mathscr{P}(S)$ is always greater than the cardinality of S; there are infinitely many infinities.

Table of Contents

(1) Algorithms

(2) Decidable Languages
(3) Uncountability and Power Sets

4 Undecidable Languages
(5) Next Class

$A_{T M}$ is Undecidable

Theorem

Given the set

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a Turing Machine and } M \text { accepts } w\},
$$

$A_{T M}$ is undecidable.

$A_{T M}$ is Undecidable

Theorem

Given the set

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a Turing Machine and } M \text { accepts } w\},
$$

$A_{\text {TM }}$ is undecidable.
$U=$ " On input $\langle M, w\rangle$, where M is a TM and w is a string:
(1) Simulate M on w.
(2) If M ever enters its accept state, accept; If M ever enters its reject state, reject."
This is a universal Turing machine and shows that $A_{T M}$ is recognizable.

An Undecidable Language

- $A_{T M}=\{\langle M, w\rangle \mid M$ is a Turing Machine and M accepts $w\}$

An Undecidable Language

- $A_{T M}=\{\langle M, w\rangle \mid M$ is a Turing Machine and M accepts $w\}$

(Think $\mathrm{C}++$ compiler written in $\mathrm{C}++$.)

An Undecidable Language

- $A_{T M}=\{\langle M, w\rangle \mid M$ is a Turing Machine and M accepts $w\}$
- Suppose there's a decider H for $A_{T M}$

$$
H(\langle M, w\rangle)= \begin{cases}\text { accept } & \text { if } M \text { accepts } w \\ \text { reject } & \text { if } M \text { does not accept } w\end{cases}
$$

An Undecidable Language

- $A_{T M}=\{\langle M, w\rangle \mid M$ is a Turing Machine and M accepts $w\}$
- Suppose there's a decider H for $A_{T M}$
- Define $D(\langle M\rangle)=\neg H(\langle M,\langle M\rangle\rangle)$

$$
D(\langle M\rangle)= \begin{cases}\text { accept } & \text { if } M \text { does not accept }\langle M\rangle \\ \text { reject } & \text { if } M \text { accepts }\langle M\rangle\end{cases}
$$

An Undecidable Language

- $A_{T M}=\{\langle M, w\rangle \mid M$ is a Turing Machine and M accepts $w\}$
- Suppose there's a decider H for $A_{T M}$
- Define $D(\langle M\rangle)=\neg H(\langle M,\langle M\rangle\rangle)$
- D can't decide $\langle D\rangle$

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

An Undecidable Language

- $A_{T M}=\{\langle M, w\rangle \mid M$ is a Turing Machine and M accepts $w\}$
- Suppose there's a decider H for $A_{T M}$
- Define $D(\langle M\rangle)=\neg H(\langle M,\langle M\rangle\rangle)$
- D can't decide $\langle D\rangle$

$$
D(\langle D\rangle)= \begin{cases}\text { accept } & \text { if } D \text { does not accept }\langle D\rangle \\ \text { reject } & \text { if } D \text { accepts }\langle D\rangle\end{cases}
$$

- \therefore Neither D nor H can exist and so $A_{T M}$ is undecidable

Machine D

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$
M_{1}	accept	reject	accept	accept	\cdots	accept
M_{2}	reject	accept	accept	reject	\cdots	reject
M_{3}	accept	accept	reject	reject	\cdots	reject
M_{4}	accept	accept	accept	accept	\cdots	accept
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\cdots
D	reject	reject	accept	reject	\cdots	$?$

Machine D

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$
M_{1}	accept	reject	accept	accept	\cdots	accept
M_{2}	reject	accept	accept	reject	\cdots	reject
M_{3}	accept	accept	reject	reject	\cdots	reject
M_{4}	accept	accept	accept	accept	\cdots	accept
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\cdots
D	reject	reject	accept	reject	\cdots	$?$

Machine D

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$
M_{1}	accept	reject	accept	accept	\cdots	accept
M_{2}	reject	accept	accept	reject	\cdots	reject
M_{3}	accept	accept	reject	reject	\cdots	reject
M_{4}	accept	accept	accept	accept	\cdots	accept
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\cdots
D	reject	reject	accept	reject	\cdots	$?$

Machine D

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$
M_{1}	accept	reject	accept	accept	\cdots	accept
M_{2}	reject	accept	accept	reject	\cdots	reject
M_{3}	accept	accept	reject	reject	\cdots	reject
M_{4}	accept	accept	accept	accept	\cdots	accept
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\cdots
D	reject	reject	accept	reject	\cdots	$?$

Machine D

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$
M_{1}	accept	reject	accept	accept	\cdots	accept
M_{2}	reject	accept	accept	reject	\cdots	reject
M_{3}	accept	accept	reject	reject	\cdots	reject
M_{4}	accept	accept	accept	accept	\cdots	accept
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\cdots
D	reject	reject	accept	reject	\cdots	$?$

Machine D

	$\left\langle M_{1}\right\rangle$	$\left\langle M_{2}\right\rangle$	$\left\langle M_{3}\right\rangle$	$\left\langle M_{4}\right\rangle$	\cdots	$\langle D\rangle$
M_{1}	accept	reject	accept	accept	\cdots	accept
M_{2}	reject	accept	accept	reject	\cdots	reject
M_{3}	accept	accept	reject	reject	\cdots	reject
M_{4}	accept	accept	accept	accept	\cdots	accept
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\cdots
D	reject	reject	accept	reject	\cdots	$?$

$A_{T M}$ is Undecidable

Theorem

Given the set

$$
A_{T M}=\{\langle M, w\rangle \mid M \text { is a Turing Machine and } M \text { accepts } w\},
$$

$A_{T M}$ is undecidable.

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

- $|\Sigma|<\infty$ implies $\left|\Sigma^{*}\right|$ is countable

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

- $|\Sigma|<\infty$ implies $\left|\Sigma^{*}\right|$ is countable
- Every TM can be represented by a string, $\langle T M\rangle$, in Σ^{*}

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

- $|\Sigma|<\infty$ implies $\left|\Sigma^{*}\right|$ is countable
- Every TM can be represented by a string, $\langle T M\rangle$, in Σ^{*}
- There are countably many TMs

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

- $|\Sigma|<\infty$ implies $\left|\Sigma^{*}\right|$ is countable
- Every TM can be represented by a string, $\langle T M\rangle$, in Σ^{*}
- There are countably many TMs
- A language, A, is a subset of \sum^{*}

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

- $|\Sigma|<\infty$ implies $\left|\Sigma^{*}\right|$ is countable
- Every TM can be represented by a string, $\langle T M\rangle$, in Σ^{*}
- There are countably many TMs
- A language, A , is a subset of Σ^{*}
- $\mathscr{L}=\{A \mid A$ is a language $\}=\mathscr{P}\left(\Sigma^{*}\right)$

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

- $|\Sigma|<\infty$ implies $\left|\Sigma^{*}\right|$ is countable
- Every TM can be represented by a string, $\langle T M\rangle$, in Σ^{*}
- There are countably many TMs
- A language, A , is a subset of Σ^{*}
- $\mathscr{L}=\{A \mid A$ is a language $\}=\mathscr{P}\left(\Sigma^{*}\right)$
- \mathscr{L} is uncountable

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.

- $|\Sigma|<\infty$ implies $\left|\Sigma^{*}\right|$ is countable
- Every TM can be represented by a string, $\langle T M\rangle$, in Σ^{*}
- There are countably many TMs
- A language, A , is a subset of Σ^{*}
- $\mathscr{L}=\{A \mid A$ is a language $\}=\mathscr{P}\left(\Sigma^{*}\right)$
- \mathscr{L} is uncountable
- \therefore Some languages are not Turing-recognizable

Non-Turing Recognizable Languages

Theorem
Some languages are not Turing-Recognizable.
Alternately:

- $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}$

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.
Alternately:

- $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}$
- $\mathscr{B}=\{$ infinite binary sequences $\}$

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.
Alternately:

- $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}$
- $\mathscr{B}=\{$ infinite binary sequences $\}$
- $\mathscr{L}=\{$ all languages $\}=\mathscr{P}\left(\Sigma^{*}\right)$

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.
Alternately:

- $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}$
- $\mathscr{B}=\{$ infinite binary sequences $\}$
- $\mathscr{L}=\{$ all languages $\}=\mathscr{P}\left(\Sigma^{*}\right)$
- $f: \mathscr{L} \longrightarrow \mathscr{B}$

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.
Alternately:

- $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}$
- $\mathscr{B}=\{$ infinite binary sequences $\}$
- $\mathscr{L}=\{$ all languages $\}=\mathscr{P}\left(\Sigma^{*}\right)$
- $f: \mathscr{L} \longrightarrow \mathscr{B}$
- $\forall A \in \mathscr{L}: f(A)=b_{1} b_{2} b_{3} b_{4} \cdots \in \mathscr{B}$

$$
b_{i}= \begin{cases}0 & s_{i} \notin A \\ 1 & s_{i} \in A\end{cases}
$$

Non-Turing Recognizable Languages

Theorem

Some languages are not Turing-Recognizable.
Alternately:

- $\Sigma^{*}=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}$
- $\mathscr{B}=\{$ infinite binary sequences $\}$
- $\mathscr{L}=\{$ all languages $\}=\mathscr{P}\left(\Sigma^{*}\right)$
- $f: \mathscr{L} \longrightarrow \mathscr{B}$
- $\forall A \in \mathscr{L}: f(A)=b_{1} b_{2} b_{3} b_{4} \cdots \in \mathscr{B}$

$$
b_{i}= \begin{cases}0 & s_{i} \notin A \\ 1 & s_{i} \in A\end{cases}
$$

- $\chi_{A}=f(A)$ is called the characteristic sequence of A

Decidability vs. Recognizably

Definition

A language, \bar{A}, is co-Turing-recognizable if it is the complement of a Turing-recognizable language A.

Decidability vs. Recognizably

Definition

A language, \bar{A}, is co-Turing-recognizable if it is the complement of a Turing-recognizable language A.

Theorem

A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable. (i.e. A and \bar{A} are both recognizable)

Decidability vs. Recognizably

Definition

A language, \bar{A}, is co-Turing-recognizable if it is the complement of a Turing-recognizable language A.

Theorem

A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable. (i.e. A and \bar{A} are both recognizable)

Theorem (contrapositive)
 A language is non-decidable if and only if it is not Turing-recognizable or not co-Turing-recognizable.

Decidability vs. Recognizably

Definition

A language, \bar{A}, is co-Turing-recognizable if it is the complement of a Turing-recognizable language A.

Theorem (contrapositive)

A language is non-decidable if and only if it is not Turing-recognizable or not co-Turing-recognizable.

Corollary

The language $\overline{A_{T M}}$ is non-Turing-recognizable.

Table of Contents

(1) Algorithms
(2) Decidable Languages
(3) Uncountability and Power Sets

44 Undecidable Languages
(5) Next Class
C. F. Rocca Jr. (WCSU)

Turing Machines Limits

Next Class

- Some Undecidable Problems

Next Class

- Some Undecidable Problems
- Specific Undecidable Problem

Next Class

- Some Undecidable Problems
- Specific Undecidable Problem
- Mapping Reducibility

Limits of Turing Machines

Dr. Chuck Rocca
roccac@wcsu.edu
http://sites.wcsu.edu/roccac

WESTERN

CONNECTICUT
STATE UNIVERSITY
MACRICOSTAS
SCHOOL OF ARTS
8 SCIENCES

