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Algorithm

An algorithm is a computational process that is describable in terms of a
Turing machine.
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Connected Graphs Example

M="On input (G), the string encoding of a graph G:
@ Check that (G) is in the correct format
@ Select the first node in G and mark it.
@ Repeat the following until no new nodes are marked:

Q For each node in G, mark it if is is attached by an edge to a
node that is already marked.
@ Scan all the nodes of G, if they are all marked, accept; otherwise
reject.”
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Decidable Unions

Given two decidable languages L1 and L, and corresponding Turing
machines My and M, the union of the languages can be decided by:
M="On input w:

@ Check that w is in the correct format.
@ Run M; on w. If it accepts, accept.
@ Run M, on w. If it accepts, accept.
© Otherwise reject”
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Recognizable Unions

Given two Turing recognizable languages L1 and Ly and corresponding
Turing machines M; and M, the union of the languages can be recognized
by:
M="On input w:

Q Check that w is in the correct format.

@ Run M; and M, alternately on w step by step. If either accepts,
accept.

@ If both halt or reject, reject.”
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Decidable vs. Recognizable

A Language is Turning-decidable or simply decidable if some Turing
machine decides it; the machine always reaches an accept or reject state.
Given any word there is a TM that can tell if the word is or is not in the
language.
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Decidable vs. Recognizable

A Language is Turning-decidable or simply decidable if some Turing
machine decides it; the machine always reaches an accept or reject state.

Given any word there is a TM that can tell if the word is or is not in the
language.

A Language is Turning-recognizable if some Turing machine recognizes it;
in this case the machine reaches an accept state, reject state, or it may
loop (fail to accept). There is a TM that accepts words in the language,
but may fail to reach a verdict if a word is not in the language.
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Decidable Intersections

Given two decidable languages Ly and L, and corresponding Turing
M="On input w:

machines M; and M, the intersections of the languages can be decided by:
@ Check that w is in the correct format.

@ Run M; and M, on w. If they both accept, accept.
@ Otherwise reject”
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D e
Decidable Intersections

Given two decidable languages Ly and L, and corresponding Turing
M="On input w:

machines M; and M, the intersections of the languages can be decided by:
@ Check that w is in the correct format.

@ Otherwise reject”

@ Run M; and M, on w. If they both accept, accept.

Why didn't we say “Run M; and M, alternately on w step by step?”

Turing Machines Limits




Decidable Complements

Given a decidable language L1 and corresponding Turing machine M; the
complement of the languages can be decided by:
M="On input w:

© Check that w is in the correct format.

©@ Run M; on w. If it accepts, reject.

@ Otherwise accept”
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Deterministic Finite Automaton

The set

Apea = {(B,w) |B is a DFA that accepts string w}

is a decidable language.
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- Decdable Languoges [
Deterministic Finite Automaton

M="On input (B, w), where B is a DFA and w is a string:
@ Check the format of the input.
@ Simulate B on input w.

@ |If the simulation ends in an accept state, accept; otherwise, reject.”
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- Decdable Languoges [
Deterministic Finite Automaton

M="On input (B, w), where B is a DFA and w is a string:
@ Check the format of the input.
@ Simulate B on input w.

@ |If the simulation ends in an accept state, accept; otherwise, reject.”

start

v 0
1 0
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- Decdable Languoges [
Deterministic Finite Automaton

M="On input (B, w), where B is a DFA and w is a string:
@ Check the format of the input.
@ Simulate B on input w.

@ |If the simulation ends in an accept state, accept; otherwise, reject.”

start
v 0
1 0
1

Machine (B)

v

[#loofa[#]o]1[#[a]o]a]w][1]n]a]o]a]a]1]o]#]a][#[a]#] [
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Nondeterministic Finite Automaton

The set

Anea = {(B,w) |B is an NFA that accepts string w}

is a decidable language.

N="On input (B, w), where B is a NFA and w is a string:
© Convert B to a DFA C.
@ Run M from the previous theorem on input (C, w).

© |If the simulation ends in an accept state, accept; otherwise, reject.”
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Regular Expressions

The set

Arex = {(B,w) |B is a regex that accepts string w}

is a decidable language.

P="On input (B, w), where B is a RegEx and w is a string:
© Convert B to a NFA C.

@ Run N from the previous theorem on input (C, w).

© |If the simulation ends in an accept state, accept; otherwise, reject.”
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o Decidanie Lansuaees
Empty Languages

The set

EDFA = {<A> |A is a DFA and L(A) = @}

is a decidable language.

T="0n input (A), the string encoding of DFA A:
@ Select the start state in A and mark it.
@ Repeat the following until no new states are marked:

Q For each state in A, mark it if there is a transition from a
marked state.
@ Scan the accept states of A, if any are marked, reject; otherwise
accept.”

SECEEECEESEEI Turing Machines Limits



o Decidanie Lansuaees
Equal Languages

The set

EQpra = {(A, B) |A and B are DFAs and L(A) = L(B)}

is a decidable language.

@ Note, DFAs are closed under unions, intersections, and compliments.
o Construct the symmetric difference of A and B, C = A XOR B or

L(C) = (L(A) mTB)) U (@m L(B)) :

@ Check if C is empty using T from the previous theorem.
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CFLs

The set

Acre = {(G,w) |G is a CFG that generates the string w}

is a decidable language.

S ="0On input (G, w), where G is a CFG and w is a string:

@ Convert G to Chomsky Normal Form.
@ List all derivations with 2n — 1 steps, n = |w|; except for n=0, then
list derivations with one step. (Why 2n — 17)

© If w is generated, accept; otherwise reject.”
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CFLs

The set

Ecre = {(G) |G is a CFG and L(G) = 0}

is a decidable language.

R="On input (G), the string encoding of CFG G:
Mark the terminals in G.
Repeat the following until no new variables get marked:

o

2}

Q Mark any variable A where A — Ui U, --- Uy is in G and the
U; are all marked.

o

If the start variable of G is not marked, accept; otherwise reject.”
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CFLs

The set

EQcre = {(G,H) |G and H are CFGs and L(G) = L(H)}

is not a decidable language.
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CFLs

The set

EQcre = {(G,H) |G and H are CFGs and L(G) = L(H)}

is not a decidable language. (Proof held until after Chapter 5.)
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CFLs

The set

EQcre = {(G,H) |G and H are CFGs and L(G) = L(H)}

is not a decidable language. (Proof held until after Chapter 5.)

@ Recall, CFLs are not necessarily closed under intersections and
complementation.
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CFLs

The set

EQcre = {(G,H) |G and H are CFGs and L(G) = L(H)}

is not a decidable language. (Proof held until after Chapter 5.)

@ Recall, CFLs are not necessarily closed under intersections and
complementation.

e L(G)={a"b"c"|m,n > 0}
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CFLs

The set

EQcre = {(G,H) |G and H are CFGs and L(G) = L(H)}

is not a decidable language. (Proof held until after Chapter 5.)

@ Recall, CFLs are not necessarily closed under intersections and
complementation.

e L(G)={a"b"c"|m,n >0}
e L(H)={a"b"c™|m,n> 0}
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CFLs

The set

EQcre = {(G,H) |G and H are CFGs and L(G) = L(H)}

is not a decidable language. (Proof held until after Chapter 5.)

@ Recall, CFLs are not necessarily closed under intersections and
complementation.

e L(G)={a"b"c"|m,n> 0}
e L(H)={a"b"c™|m,n> 0}
o L(G)NL(H)={a"b"c"|n > 0} is not context-free by the pumping

lemma

ECEEECEESEEI  Turing Machines Limits



Hierarchy of Languages

Non-Turing-Recognizable
Turing-Recognizable

Decidable

Context-Free

Regular
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Cardinality: Naive Definition

The cardinality of a set is the number of elements in the set and two sets
have the same cardinality if they have the same number of elements.

A=1{1,2,3,4,5}

B ={a,b,c,d, e}
C={,0,#,%,%, N}
N={1,2,3,4,.}

Z ={0,£1,+2 43, ...}

Q= {a/bla,b e Z and b # 0}

ECEEECEESETEI  Turing Machines Limits



N U ol
Cardinality: Improved Definition

The cardinality of a finite set is the number of elements in the set. A set is
infinite if there is a one-to-one correspondence between the set and a

proper subset of the set. And, two sets have the same cardinality if there
exists a one-to-one correspondence between their elements.

=] (=)
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N to 2N

N =2
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N to 2N
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N to Z
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N to Z
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N to Z
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N to Z
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N to Z

N Z

1 0
2 1
3 -1
4 2
5 -2
6
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N to QF
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Cantor Diagonalization

Z

R
0.65395501314- - -
0.73800613014- - -
0.05050813247- - -
0.10810350448- - -
0.04587954758- - -
0.66716666577- - -
0.73243627345- - -
0.27311930829- - -
0.17177211903- - -
0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65395501314- - -
0.73800613014- - -
0.05050813247- - -
0.10810350448- - -
0.04587954758- - -
0.66716666577- - -
0.73243627345- - -
0.27311930829- - -
0.17177211903- - -
0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - - o
0.10810350448- - -

0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -
0.73800613014- - - New Number:
0.05050813247- - -
0.10810350448. - - x=0.74
0.04587954758. - -
0.66716666577- - -
0.73243627345. - -
0.27311930829. - -
0.17177211903 - -
0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

0.10810350448. - - x = 0.741
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

0.10810350448. - - x = 0.7412
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

0.10810350448. - - x = 0.74128
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

0.10810350448. - - x = 0.741287
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

0.10810350448. - - x = 0.7412873
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

0.10810350448. - - x = 0.74128731
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

0.10810350448. - - x = 0.741287318
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

Z

R
0.65305501314- - -

0.73800613014- - - New Number:
0.05050813247- - -

010810350045, . x = 0.7412873187 . ..
0.04587954758. - -

0.66716666577- - -

0.73243627345. - -

0.27311930829. - -

0.17177211903 - -

0.45518277788- - -

O ©W O ~NOOL P WDN =

—
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Cantor Diagonalization

N R
1| 0.65395501314- - -

2 | 0.73800613014- - - New Number:

3 | 0.05050813247- - -

4| 010810350448, . - x = 0.7412873187 . ..
5| 0.04587954758. - - Avoiding 0's and 9's when
6| 0.66716666577 - replacing digits since

7 | 0.73243627345. - -

8 | 0.27311930829- - - 0.19999... = 0.20000. ..
9 | 0.17177211903- - -

10 | 0.45518277788- - -
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Power Sets

N=1{1,2,3,4,5,...}
P(N) ={0,{1},{2,3},{4},{8},{7,19,83},{101,23,7},...}
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Power Sets

N={1,2,3,4,5,...}
P(N) = {s1,%,53,5,55 ...}
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Power Sets

N={1,2,3,4,5,...}
P(N) = {s1,%,53,5,55 ...}

;sl

> SO

> S3
54

> Sp
> Sp

> S7

SN oA W N
4
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Power Sets
N={1,23,4,5,..} Define a new set X as follows
P(N) = {s1,5,53,5,55 ...} X ={n|n¢ s,}
1 > 51 Thus, if
> S
?, >5§ @ 1€s,thenl ¢ X
4 > 4
5 > 55
6 > %6
7 > ST
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Power Sets
N={1,23,4,5,..} Define a new set X as follows
P(N) = {s1,%,53,5,55 ...} X ={nln¢& sy}
1 > 51 Thus, if
2 > %2 @ 15, thenl g X
] . s 1,
A - @ 1¢Zs;,thenleX
5 > 55
6 > %6
7 > ST
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Power Sets
N={1,23,4,5,..} Define a new set X as follows
P(N) = {s1,5,53,5,55 ...} X ={n|n¢ s,}
1 > 51 Thus, if
2 > 2 @ 1cs,thenl1¢gX
] . s 1
4 ) @ 1¢s,thenle X
5 > Sp @ 2cs, then2¢ X
6 > %6
7 > ST
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Power Sets

N={1,2,3,4,5,..}

P(N) = {s1,5,53,5,55 ...}

N OO0
v

S1
52
53
54
S5
Se
S7

Turing Machines Limits

Define a new set X as follows

X ={n|n & sn}
Thus, if
l1€s,thenl g X
1€ s,thenle X
2€ s, then2¢ X
2¢ sy, then2 € X




Power Sets
N ={1,2,3,4,5,...} Define a new set X as follows
P(N) ={s1,5,53,54,55 ...} X = {nlng s,
1 > 51 Thus, if
2 > 2 @ les,thenlg X
3 > 53 1,
4 > S @ 1¢&s,thenle X
5 > S5 @ 2€ s, then2¢ X
6 > % @ 2¢ s, then2e X
7 > S7
. . @ 3€s3,then3¢ X
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Power Sets
N ={1,2,3,4,5,...} Define a new set X as follows
P(N) ={s1,5,53,54,55 ...} X = {nlng s,
1 ! Thus, if
2 > 2 @ les,thenlg X
3 > 53 1,
4 > S @ 1¢&s,thenle X
5 > S5 @ 2€ s, then2¢ X
6 > % @ 2¢ s, then2e X
7 > S7
. _____ . @ 3€s3,then3¢X
@ 3¢ s3, then3eX
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Power Sets
N ={1,2,3,4,5,...} Define a new set X as follows
P(N) ={s1,5,53,54,55 ...} X = {nlng s,
1 > 51 Thus, if
2 > 2 @ les,thenlg X
3 > $3 1,
4 > S @ 1¢&s,thenle X
5 > S5 @ 2€ s, then2¢ X
6 > % @ 2¢ s, then2e X
7 > S7
. _____ . @ 3€s3,then3¢X
@ 3¢ s3, then3e X
@ etc.
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Power Sets
N ={1,2,3,4,5,...} Define a new set X as follows
P(N) ={s1,5,53,54,55 ...} X = {nlng s,
1 > 51 Thus, if
2 > 2 @ les,thenlg X
3 > $3 1,
4 > S @ 1¢&s,thenle X
5 > S5 @ 2€ s, then2¢ X
6 > % @ 2¢ s, then2e X
7 > S7
. _____ . @ 3€s3,then3¢X

@ 3¢ s3, then3e X
@ etc.

And therefore Vn : X # s,.
[} [ =
BB Tuing Machines Limits




A Theorem on Power Sets

Given a set S, the cardinality of Z7(S) is always greater than the
cardinality of S; there are infinitely many infinities.

SECEEECEESEI Turing Machines Limits
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o DelRlopee
A1n is Undecidable

Given the set

Arm = {(M,w) M is a Turing Machine and M accepts w},

ATnm Is undecidable.
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o DelRlopee
A1n is Undecidable

Given the set

Arm = {(M,w) M is a Turing Machine and M accepts w},

ATnm Is undecidable.

U= "On input (M, w), where M is a TM and w is a string:
@ Simulate M on w.

© If M ever enters its accept state, accept; |f M ever enters its reject
state, reject.”

This is a universal Turing machine and shows that A1y, is recognizable.
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An Undecidable Language

o Aty = {(M,w)|M is a Turing Machine and M accepts w}

e

start % Machine M

N
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An Undecidable Language

e Aty = {(M,w)|M is a Turing Machine and M accepts w}

e

start —> Machine M

N

(Think C++ compiler written in C++.)
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o Undecidanie Languages |
An Undecidable Language

e Aty = {(M,w)|M is a Turing Machine and M accepts w}
@ Suppose there's a decider H for A1y

accept if M accepts w
reject if M does not accept w

HM, ) = {

SECEEECEESEI  Turing Machines Limits



o Undecidanie Languages |
An Undecidable Language

e Aty = {(M,w)|M is a Turing Machine and M accepts w}
@ Suppose there's a decider H for A1y
e Define D((M)) = -H((M, (M)))

| accept if M does not accept (M)
D({M)) = { reject  if M accepts (M)

ECEEECEESEEI Turing Machines Limits



o Undecidanie Languages |
An Undecidable Language

Arm = {(M,w) |M is a Turing Machine and M accepts w}
Suppose there's a decider H for A1y

Define D({M)) = =H((M, (M)))
D can't decide (D)

| accept if D does not accept (D)
D((D)) = { reject  if D accepts (D)
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o Undecidanie Languages |
An Undecidable Language

Arm = {(M,w) |M is a Turing Machine and M accepts w}
Suppose there's a decider H for A1y

Define D({M)) = =H((M, (M)))
D can't decide (D)

| accept if D does not accept (D)
D((D)) = { reject  if D accepts (D)

.". Neither D nor H can exist and so A1y is undecidable
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Machine D
(M) (M)  (Ms) (M) (D)
My | accept  reject accept accept accept
My | reject accept accept reject reject
Ms | accept accept reject  reject reject
M, | accept accept accept accept accept
D | reject reject accept reject ?
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o DelRlopee
A1n is Undecidable

Given the set

Arm = {(M,w) M is a Turing Machine and M accepts w},

ATnm Is undecidable.
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Non-Turing Recognizable Languages

Some languages are not Turing-Recognizable. I

@ |X| < oo implies |X*| is countable
@ Every TM can be represented by a string, (TM), in ©*
@ There are countably many TMs

@ A language, A, is a subset of ©*
o ¥ ={A|Ais a language} = Z(X¥)
@ .Z is uncountable

@ .. Some languages are not Turing-recognizable

u}
8
I
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Non-Turing Recognizable Languages

Some languages are not Turing-Recognizable. I

Alternately:
o X' ={s1,5,53,5,...}
e # = {infinite binary sequences}
o ¥ = {all languages} = Z(X*)

of: ¥ — R
4] VAE,,ZZf(A):b1b2b3b4-~~€f’B
bi: 0 S;%A
1 s;€A
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Non-Turing Recognizable Languages

Some languages are not Turing-Recognizable. I

Alternately:

o X' ={s1,5,53,5,...}
e # = {infinite binary sequences}
o ¥ = {all languages} = Z(X*)

of: ¥ — A
o VAc X :f(A)=bibybsby--- € B
b — 0 S; € A
e 1 s5€¢A
@ xa = f(A) is called the characteristic sequence of A &

[} [ =
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Decidability vs. Recognizably

A language, A, is co- Turing-recognizable if it is the complement of a
Turing-recognizable language A.
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Decidability vs. Recognizably

A language, A, is co-Turing-recognizable if it is the complement of a
Turing-recognizable language A.

A language is decidable if and only if it is Turing-recognizable and
co-Turing-recognizable. (i.e. A and A are both recognizable)

A language is non-decidable if and only if it is not Turing-recognizable or
not co- Turing-recognizable.
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o Undecidanie Languages |
Decidability vs. Recognizably

A language, A, is co- Turing-recognizable if it is the complement of a
Turing-recognizable language A.

A language is non-decidable if and only if it is not Turing-recognizable or
not co-Turing-recognizable.

The language Aty is non-Turing-recognizable. I
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