Limits of Turing Machines

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

Table of Contents

- Algorithms
- 2 Decidable Languages
- Uncountability and Power Sets
- Undecidable Languages
- Mext Class

Table of Contents

- Algorithms
- Decidable Languages
- Uncountability and Power Sets
- 4 Undecidable Languages
- Next Class

Algorithm

Definition

An *algorithm* is a computational process that is describable in terms of a Turing machine.

Connected Graphs Example

M="On input $\langle G \rangle$, the string encoding of a graph G:

- **①** Check that $\langle G \rangle$ is in the correct format
- Select the first node in G and mark it.
- Repeat the following until no new nodes are marked:
- For each node in G, mark it if is is attached by an edge to a node that is already marked.
- Scan all the nodes of G, if they are all marked, accept; otherwise reject."

Decidable Unions

Given two *decidable* languages L_1 and L_2 and corresponding Turing machines M_1 and M_2 the union of the languages can be decided by: M= "On input w:

- Check that w is in the correct format.
- **1** Run M_1 on w. If it accepts, accept.
- ② Run M_2 on w. If it accepts, accept.
- Otherwise reject"

Recognizable Unions

Given two *Turing recognizable* languages L_1 and L_2 and corresponding Turing machines M_1 and M_2 the union of the languages can be recognized by:

M = "On input w:

- Oheck that w is in the correct format.
- Run M_1 and M_2 alternately on w step by step. If either accepts, accept.
- 2 If both halt or reject, reject."

Decidable vs. Recognizable

Definition

A Language is *Turning-decidable* or simply *decidable* if some Turing machine decides it; the machine always reaches an accept or reject state. Given any word there is a TM that can tell if the word is or is not in the language.

Decidable vs. Recognizable

Definition

A Language is *Turning-decidable* or simply *decidable* if some Turing machine decides it; the machine always reaches an accept or reject state. Given any word there is a TM that can tell if the word is or is not in the language.

Definition

A Language is *Turning-recognizable* if some Turing machine recognizes it; in this case the machine reaches an accept state, reject state, or it may loop (fail to accept). There is a TM that accepts words in the language, but may fail to reach a verdict if a word is not in the language.

Decidable Intersections

Given two *decidable* languages L_1 and L_2 and corresponding Turing machines M_1 and M_2 the intersections of the languages can be decided by: M= "On input w:

- Check that w is in the correct format.
- Run M_1 and M_2 on w. If they both accept, accept.
- Otherwise reject"

Decidable Intersections

Given two *decidable* languages L_1 and L_2 and corresponding Turing machines M_1 and M_2 the intersections of the languages can be decided by: M= "On input w:

- Check that w is in the correct format.
- **1** Run M_1 and M_2 on w. If they both accept, accept.
- Otherwise reject"

Why didn't we say "Run M_1 and M_2 alternately on w step by step?"

Decidable Complements

Given a decidable language L_1 and corresponding Turing machine M_1 the complement of the languages can be decided by:

M="On input w:

- Check that w is in the correct format.
- **1** Run M_1 on w. If it accepts, *reject*.
- Otherwise accept"

Table of Contents

- Algorithms
- 2 Decidable Languages
- Uncountability and Power Sets
- 4 Undecidable Languages
- Next Class

Theorem

The set

$$A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA that accepts string } w\}$$

is a decidable language.

M="On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- Oheck the format of the input.
- ① Simulate B on input w.
- 2 If the simulation ends in an accept state, accept; otherwise, reject."

M="On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- Oheck the format of the input.
- ① Simulate B on input w.
- 2 If the simulation ends in an accept state, accept; otherwise, reject."

M="On input $\langle B, w \rangle$, where B is a DFA and w is a string:

- Oheck the format of the input.
- **1** Simulate B on input w.
- 2 If the simulation ends in an accept state, accept; otherwise, reject."

Theorem

The set

$$A_{NFA} = \{\langle B, w \rangle | B \text{ is an NFA that accepts string } w\}$$

is a decidable language.

N="On input $\langle B, w \rangle$, where B is a NFA and w is a string:

- Convert B to a DFA C.
- ② Run M from the previous theorem on input $\langle C, w \rangle$.
- 3 If the simulation ends in an accept state, accept; otherwise, reject."

Regular Expressions

Theorem

The set

$$A_{REX} = \{\langle B, w \rangle | B \text{ is a regex that accepts string } w\}$$

is a decidable language.

P="On input $\langle B, w \rangle$, where B is a RegEx and w is a string:

- Convert B to a NFA C.
- 2 Run *N* from the previous theorem on input $\langle C, w \rangle$.
- 3 If the simulation ends in an accept state, accept; otherwise, reject."

Empty Languages

Theorem

The set

$$E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$$

is a decidable language.

T="On input $\langle A \rangle$, the string encoding of DFA A:

- Select the start state in A and mark it.
- Repeat the following until no new states are marked:
- For each state in A, mark it if there is a transition from a marked state.
- Scan the accept states of A, if any are marked, reject; otherwise accept."

Equal Languages

Theorem

The set

$$EQ_{DFA} = \{\langle A, B \rangle | A \text{ and } B \text{ are DFAs and } L(A) = L(B)\}$$

is a decidable language.

- Note, DFAs are closed under *unions*, *intersections*, and *compliments*.
- Construct the *symmetric difference* of A and B, $C \equiv A \ XOR \ B$ or

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right).$$

ullet Check if C is empty using T from the previous theorem.

Theorem

The set

$$A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG that generates the string } w\}$$

is a decidable language.

- S = "On input $\langle G, w \rangle$, where G is a CFG and w is a string:
 - Onvert G to Chomsky Normal Form.
 - ② List all derivations with 2n-1 steps, n=|w|; except for n=0, then list derivations with one step. (Why 2n-1?)
 - 3 If w is generated, accept; otherwise reject."

Theorem

The set

$$E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \emptyset\}$$

is a decidable language.

R="On input $\langle G \rangle$, the string encoding of CFG G:

- Mark the terminals in G.
 - Repeat the following until no new variables get marked:
 - Mark any variable A where $A \rightarrow U_1 U_2 \cdots U_k$ is in G and the U_i are all marked.
 - If the start variable of G is not marked, accept; otherwise reject."

Theorem

The set

$$EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H)\}$$

is not a decidable language.

Theorem

The set

$$EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H)\}$$

Theorem

The set

$$EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H)\}$$

is not a decidable language. (Proof held until after Chapter 5.)

 Recall, CFLs are not necessarily closed under intersections and complementation.

Theorem

The set

$$EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H)\}$$

- Recall, CFLs are not necessarily closed under intersections and complementation.
- $L(G) = \{a^m b^n c^n | m, n \ge 0\}$

Theorem

The set

$$EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H)\}$$

- Recall, CFLs are not necessarily closed under intersections and complementation.
- $L(G) = \{a^m b^n c^n | m, n \ge 0\}$
- $L(H) = \{a^n b^n c^m | m, n \ge 0\}$

Theorem

The set

$$EQ_{CFG} = \{\langle G, H \rangle | G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H)\}$$

- Recall, CFLs are not necessarily closed under intersections and complementation.
- $L(G) = \{a^m b^n c^n | m, n \ge 0\}$
- $L(H) = \{a^n b^n c^m | m, n \ge 0\}$
- $L(G) \cap L(H) = \{a^n b^n c^n | n \ge 0\}$ is not context-free by the pumping lemma

Hierarchy of Languages

Table of Contents

- Algorithms
- Decidable Languages
- Uncountability and Power Sets
- 4 Undecidable Languages
- Next Class

Cardinality: Naive Definition

Definition

The *cardinality* of a set is the number of elements in the set and two sets have the same cardinality if they have the same number of elements.

$$A = \{1, 2, 3, 4, 5\}$$

$$B = \{a, b, c, d, e\}$$

$$C = \{!, @, \#, \$, \%, \land\}$$

$$\mathbb{N} = \{1, 2, 3, 4, ...\}$$

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, ...\}$$

$$\mathbb{Q} = \{a/b|a, b \in \mathbb{Z} \text{ and } b \neq 0\}$$

Cardinality: Improved Definition

Definition

The *cardinality* of a finite set is the number of elements in the set. A set is *infinite* if there is a one-to-one correspondence between the set and a proper subset of the set. And, two sets have the same cardinality if there exists a one-to-one correspondence between their elements.

\mathbb{N} to $2\mathbb{N}$

\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Z}

\mathbb{N} to \mathbb{Q}^+

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	$0.73800613014\cdots$
3	$0.05050813247\cdots$
4	$0.10810350448\cdots$
5	0.04587954758
6	$0.66716666577\cdots$
7	0.73243627345
8	$0.27311930829\cdots$
9	$0.17177211903\cdots$
10	$0.45518277788 \cdots$
:	÷

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716666577
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.45518277788
:	÷

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

$$x = 0.7$$

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

$$x = 0.74$$

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

$$x = 0.741$$

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

$$x = 0.7412$$

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

$$x = 0.74128$$

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.45518277788
:	:

$$x = 0.741287$$

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

$$x = 0.7412873$$

\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

```
x = 0.74128731
```


\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

```
x = 0.741287318
```


\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.45518277788
:	:

```
x = 0.7412873187...
```


\mathbb{N}	\mathbb{R}
1	0.65395501314
2	0.7 <mark>3</mark> 800613014···
3	0.05 <mark>0</mark> 50813247···
4	0.108 <mark>1</mark> 0350448···
5	0.0458 <mark>7</mark> 954758···
6	0.66716 <mark>6</mark> 66577···
7	0.732436 <mark>2</mark> 7345···
8	0.2731193 <mark>0</mark> 829···
9	0.17177211 <mark>9</mark> 03···
10	0.455182777 <mark>8</mark> 8···
:	:

New Number:

```
x = 0.7412873187...
```

Avoiding 0's and 9's when replacing digits since

$$0.19999... = 0.20000...$$

$$\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$$

$$\mathscr{P}(\mathbb{N}) = \{\emptyset, \{1\}, \{2, 3\}, \{4\}, \{8\}, \{7, 19, 83\}, \{101, 23, 7\}, \ldots\}$$

$$\mathbb{N} = \{1, 2, 3, 4, 5, \ldots\}$$
$$\mathscr{P}(\mathbb{N}) = \{s_1, s_2, s_3, s_4, s_5 \ldots\}$$

Define a new set X as follows

$$X = \{n | n \not\in s_n\}$$

•
$$1 \in s_1$$
, then $1 \notin X$

Define a new set X as follows

$$X = \{n | n \not\in s_n\}$$

- $1 \in s_1$, then $1 \notin X$
- $1 \notin s_1$, then $1 \in X$

$$\mathbb{N} = \{1, 2, 3, 4, 5, ...\}$$

$$\mathcal{P}(\mathbb{N}) = \{s_1, s_2, s_3, s_4, s_5 ...\}$$

$$1 \longrightarrow s_1$$

$$2 \longrightarrow s_2$$

$$3 \longrightarrow s_3$$

$$4 \longrightarrow s_4$$

$$5 \longrightarrow s_5$$

$$6 \longrightarrow s_6$$

$$7 \longrightarrow s_7$$

$$\vdots$$

Define a new set X as follows

$$X = \{n | n \not\in s_n\}$$

- $1 \in s_1$, then $1 \notin X$
- $1 \notin s_1$, then $1 \in X$
- $2 \in s_2$, then $2 \notin X$

Define a new set X as follows

$$X = \{n | n \not\in s_n\}$$

- $1 \in s_1$, then $1 \notin X$
- $1 \notin s_1$, then $1 \in X$
- $2 \in s_2$, then $2 \notin X$
- $2 \notin s_2$, then $2 \in X$

Define a new set X as follows

$$X = \{n | n \notin s_n\}$$

- $1 \in s_1$, then $1 \notin X$
- $1 \notin s_1$, then $1 \in X$
- $2 \in s_2$, then $2 \notin X$
- $2 \notin s_2$, then $2 \in X$
- $3 \in s_3$, then $3 \notin X$

Define a new set X as follows

$$X = \{n | n \notin s_n\}$$

- $1 \in s_1$, then $1 \notin X$
- $1 \notin s_1$, then $1 \in X$
- $2 \in s_2$, then $2 \notin X$
- $2 \notin s_2$, then $2 \in X$
- $3 \in s_3$, then $3 \notin X$
- $3 \notin s_3$, then $3 \in X$

Define a new set X as follows

$$X = \{n | n \not\in s_n\}$$

- $1 \in s_1$, then $1 \notin X$
- $1 \notin s_1$, then $1 \in X$
- $2 \in s_2$, then $2 \notin X$
- $2 \notin s_2$, then $2 \in X$
- $3 \in s_3$, then $3 \notin X$
- $3 \notin s_3$, then $3 \in X$
- etc.

Define a new set X as follows

$$X = \{n | n \not\in s_n\}$$

Thus, if

- $1 \in s_1$, then $1 \notin X$
- $1 \notin s_1$, then $1 \in X$
- $2 \in s_2$, then $2 \notin X$
- $2 \notin s_2$, then $2 \in X$
- $3 \in s_3$, then $3 \notin X$
- $3 \notin s_3$, then $3 \in X$
- etc.

And therefore $\forall n : X \neq s_n$.

A Theorem on Power Sets

Theorem

Given a set S, the cardinality of $\mathcal{P}(S)$ is always greater than the cardinality of S; there are infinitely many infinities.

Table of Contents

- Algorithms
- Decidable Languages
- 3 Uncountability and Power Sets
- Undecidable Languages
- Next Class

A_{TM} is Undecidable

Theorem

Given the set

$$A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\},$$

A_{TM} is undecidable.

A_{TM} is Undecidable

Theorem

Given the set

 $A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\},$

 A_{TM} is undecidable.

U = "On input $\langle M, w \rangle$, where M is a TM and w is a string:

- lacksquare Simulate M on w.
- 2 If M ever enters its accept state, accept; If M ever enters its reject state, reject."

This is a *universal Turing machine* and shows that A_{TM} is recognizable.

• $A_{TM} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$

• $A_{TM} = \{ \langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w \}$

(Think C++ compiler written in C++.)

- $A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\}$
- ullet Suppose there's a decider H for A_{TM}

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

- $A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\}$
- ullet Suppose there's a decider H for A_{TM}
- Define $D(\langle M \rangle) = \neg H(\langle M, \langle M \rangle))$

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

- $A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\}$
- ullet Suppose there's a decider H for A_{TM}
- Define $D(\langle M \rangle) = \neg H(\langle M, \langle M \rangle))$
- D can't decide $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D \rangle \\ reject & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

- $A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\}$
- ullet Suppose there's a decider H for A_{TM}
- Define $D(\langle M \rangle) = \neg H(\langle M, \langle M \rangle))$
- D can't decide $\langle D \rangle$

$$D(\langle D \rangle) = \left\{ egin{array}{ll} \textit{accept} & \textit{if } D \textit{ does not accept } \langle D \rangle \\ \textit{reject} & \textit{if } D \textit{ accepts } \langle D \rangle \end{array} \right.$$

• ... Neither D nor H can exist and so A_{TM} is undecidable


```
\langle M_1 \rangle
                    \langle M_2 \rangle
                                 \langle M_3 \rangle
                                             \langle M_4 \rangle
                                                                  \langle D \rangle
M_1
                    reject
       accept
                                accept
                                            accept
                                                               accept
M_2
                                            reject
                                                                reject
        reject
                   accept
                                accept
M_3
                   accept
                                reject
                                            reject
                                                                reject
       accept
M_4
       accept
                                            accept
                   accept
                                accept
                                                               accept
D
        reject
                    reject
                               accept
                                             reject
```



```
\langle M_1 \rangle
                     \langle M_2 \rangle
                                 \langle M_3 \rangle
                                             \langle M_4 \rangle
                                                                  \langle D \rangle
M_1
                    reject
       accept
                                accept
                                            accept
                                                               accept
M_2
                                            reject
                                                                reject
        reject
                   accept
                                accept
M_3
                                reject
                                             reject
                                                                reject
       accept
                   accept
M_4
       accept
                                            accept
                   accept
                                accept
                                                               accept
D
        reject
                    reject
                                accept
                                             reject
```



```
\langle M_1 \rangle
                     \langle M_2 \rangle
                                 \langle M_3 \rangle
                                             \langle M_4 \rangle
                                                                  \langle D \rangle
M_1
                    reject
       accept
                                accept
                                            accept
                                                                accept
M_2
                                            reject
                                                                reject
        reject
                   accept
                                accept
M_3
                                reject
                                             reject
                                                                reject
       accept
                   accept
M_4
       accept
                                accept
                                            accept
                   accept
                                                                accept
D
        reject
                    reject
                                accept
                                             reject
```



```
\langle M_1 \rangle
                     \langle M_2 \rangle
                                 \langle M_3 \rangle
                                              \langle M_4 \rangle
                                                                  \langle D \rangle
                                                         . . .
M_1
                    reject
       accept
                                accept
                                             accept
                                                                accept
M_2
                                            reject
                                                                 reject
        reject
                    accept
                                accept
M_3
                                reject
                                             reject
                                                                 reject
       accept
                    accept
M_4
       accept
                                accept
                                             accept
                    accept
                                                         . . .
                                                                accept
D
        reject
                    reject
                                accept
                                             reject
```



```
\langle M_1 \rangle
                    \langle M_2 \rangle
                                 \langle M_3 \rangle
                                             \langle M_4 \rangle
                                                                  \langle D \rangle
                                                        . . .
M_1
                    reject
       accept
                                accept
                                            accept
                                                               accept
M_2
                                            reject
                                                                reject
        reject
                   accept
                                accept
M_3
                                reject
                                            reject
                                                                reject
       accept
                   accept
M_4
       accept
                                accept
                                            accept
                   accept
                                                               accept
D
        reject
                    reject
                                accept
                                            reject
```



```
\langle M_1 \rangle
                    \langle M_2 \rangle
                                 \langle M_3 \rangle
                                             \langle M_4 \rangle
                                                                  \langle D \rangle
                                                        . . .
M_1
                    reject
       accept
                                accept
                                            accept
                                                               accept
M_2
                                            reject
                                                                reject
        reject
                   accept
                                accept
M_3
                                reject
                                            reject
                                                                reject
       accept
                   accept
M_4
       accept
                                accept
                                            accept
                   accept
                                                               accept
D
        reject
                    reject
                                accept
                                            reject
```


A_{TM} is Undecidable

Theorem

Given the set

$$A_{TM} = \{\langle M, w \rangle | M \text{ is a Turing Machine and } M \text{ accepts } w\},$$

A_{TM} is undecidable.

Theorem

Theorem

Some languages are not Turing-Recognizable.

• $|\Sigma| < \infty$ implies $|\Sigma^*|$ is countable

Theorem

- $|\Sigma| < \infty$ implies $|\Sigma^*|$ is countable
- Every TM can be represented by a string, $\langle TM \rangle$, in Σ^*

Theorem

- $|\Sigma| < \infty$ implies $|\Sigma^*|$ is countable
- Every TM can be represented by a string, $\langle TM \rangle$, in Σ^*
- There are countably many TMs

Theorem

- $|\Sigma| < \infty$ implies $|\Sigma^*|$ is countable
- Every TM can be represented by a string, $\langle TM \rangle$, in Σ^*
- There are countably many TMs
- A language, A, is a subset of Σ^*

Theorem

- $|\Sigma| < \infty$ implies $|\Sigma^*|$ is countable
- Every TM can be represented by a string, $\langle TM \rangle$, in Σ^*
- There are countably many TMs
- A language, A, is a subset of Σ^*
- $\mathcal{L} = \{A|A \text{ is a language}\} = \mathscr{P}(\Sigma^*)$

Theorem

- $|\Sigma| < \infty$ implies $|\Sigma^*|$ is countable
- Every TM can be represented by a string, $\langle TM \rangle$, in Σ^*
- There are countably many TMs
- A language, A, is a subset of Σ^*
- $\mathcal{L} = \{A|A \text{ is a language}\} = \mathscr{P}(\Sigma^*)$
- \bullet \mathscr{L} is uncountable

Theorem

- $|\Sigma| < \infty$ implies $|\Sigma^*|$ is countable
- Every TM can be represented by a string, $\langle TM \rangle$, in Σ^*
- There are countably many TMs
- A language, A, is a subset of Σ^*
- $\mathcal{L} = \{A|A \text{ is a language}\} = \mathscr{P}(\Sigma^*)$
- \bullet \mathscr{L} is uncountable
- ... Some languages are not Turing-recognizable

Theorem

Some languages are not Turing-Recognizable.

Theorem

Some languages are not Turing-Recognizable.

- $\Sigma^* = \{s_1, s_2, s_3, s_4, \ldots\}$
- $\mathscr{B} = \{\text{infinite binary sequences}\}$

Theorem

Some languages are not Turing-Recognizable.

- $\Sigma^* = \{s_1, s_2, s_3, s_4, \ldots\}$
- $\mathscr{B} = \{\text{infinite binary sequences}\}$
- $\mathscr{L} = \{\text{all languages}\} = \mathscr{P}(\Sigma^*)$

Theorem

Some languages are not Turing-Recognizable.

- $\Sigma^* = \{s_1, s_2, s_3, s_4, \ldots\}$
- $\mathscr{B} = \{\text{infinite binary sequences}\}$
- $\mathscr{L} = \{ \mathsf{all \ languages} \} = \mathscr{P}(\Sigma^*)$
- $f: \mathcal{L} \longrightarrow \mathcal{B}$

Theorem

Some languages are not Turing-Recognizable.

- $\Sigma^* = \{s_1, s_2, s_3, s_4, \ldots\}$
- $\mathscr{B} = \{\text{infinite binary sequences}\}$
- $\mathscr{L} = \{\text{all languages}\} = \mathscr{P}(\Sigma^*)$
- $f: \mathcal{L} \longrightarrow \mathcal{B}$
- $\forall A \in \mathcal{L} : f(A) = b_1 b_2 b_3 b_4 \cdots \in \mathcal{B}$

$$b_i = \left\{ \begin{array}{ll} 0 & s_i \notin A \\ 1 & s_i \in A \end{array} \right.$$

Theorem

Some languages are not Turing-Recognizable.

Alternately:

- $\Sigma^* = \{s_1, s_2, s_3, s_4, \ldots\}$
- $\mathscr{B} = \{\text{infinite binary sequences}\}$
- $\mathcal{L} = \{\text{all languages}\} = \mathscr{P}(\Sigma^*)$
- $f: \mathcal{L} \longrightarrow \mathcal{B}$
- $\forall A \in \mathcal{L} : f(A) = b_1 b_2 b_3 b_4 \cdots \in \mathcal{B}$

$$b_i = \begin{cases} 0 & s_i \notin A \\ 1 & s_i \in A \end{cases}$$

• $\chi_A = f(A)$ is called the *characteristic sequence* of A

Definition

A language, \overline{A} , is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language A.

Definition

A language, \overline{A} , is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language A.

Theorem

A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable. (i.e. A and \overline{A} are both recognizable)

Definition

A language, A, is co-Turing-recognizable if it is the complement of a Turing-recognizable language A.

Theorem

A language is decidable if and only if it is Turing-recognizable and co-Turing-recognizable. (i.e. A and \overline{A} are both recognizable)

Theorem (contrapositive)

A language is non-decidable if and only if it is not Turing-recognizable or not co-Turing-recognizable.

Definition

A language, \overline{A} , is *co-Turing-recognizable* if it is the complement of a Turing-recognizable language A.

Theorem (contrapositive)

A language is non-decidable if and only if it is not Turing-recognizable or not co-Turing-recognizable.

Corollary

The language $\overline{A_{TM}}$ is non-Turing-recognizable.

Table of Contents

- Algorithms
- Decidable Languages
- 3 Uncountability and Power Sets
- 4 Undecidable Languages
- Next Class

Next Class

Some Undecidable Problems

Next Class

- Some Undecidable Problems
- Specific Undecidable Problem

Next Class

- Some Undecidable Problems
- Specific Undecidable Problem
- Mapping Reducibility

Limits of Turing Machines

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

