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?(g1 %6 &) = ¢(&1) *n ¢(g2)

A function ¢ from a group G to a group H is a group homomorphism provided
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Homomorphisms of Groups

A function ¢ from a group G to a group H is a group homomorphism provided

?(g1 %6 &) = ¢(&1) *n ¢(g2)

If : G — H is a homomorphism, then the kernel of ¢ is the set

kerp = {g € G|¢(g) = en}.
~ C.F.RoccalJr. (WCSU)
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@ r (1234)
@ r? 1 (1234)* = (13)(24)
0 s (1234)% = (1432)
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r— (1234)

r? > (1234) = (13)(24)
rP i (1234)% = (1432)
rfe (1234) = (1) =e
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r— (1234)

r? > (1234) = (13)(24)
rP i (1234)% = (1432)
rfe (1234) = (1) =e

o f s (12)(34)
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r? > (1234) = (13)(24) @ rf > (1234)(12)(34) = (13)
rP i (1234)% = (1432)

rfe (1234) = (1) =e
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r— (1234)

r? > (1234) = (13)(24)
rP i (1234)% = (1432)
rfe (1234) = (1) =e
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o f — (1234)(12)(34) = (13)
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@ r? 1 (1234)* = (13)(24) @ rf > (1234)(12)(34) = (13)
o r* > (1234)° = (1432) @ r’f > (13)(24)(12)(34) = (14)(23)
o (1234 =(1)=e
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r? > (1234) = (13)(24)
rP i (1234)% = (1432)
rfe (1234) = (1) =e

Groups and Homomorphisms

f > (12)(34)
rf > (1234)(12)(34) = (13)
r?f i (13)(24)(12)(34) = (14)(23)

r3f




r— (1234)

r? > (1234) = (13)(24)
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rfe (1234) = (1) =e
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f i (12)(34)

rf — (1234)(12)(34) = (13)

r?f i (13)(24)(12)(34) = (14)(23)
rPf i (1432)(12)(34) = (24)
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r? i (1234)% = (13)(24)
rP i (1234)% = (1432)
rfe (1234) = (1) =e

f i (12)(34)

rf — (1234)(12)(34) = (13)

r?f i (13)(24)(12)(34) = (14)(23)
rPf i (1432)(12)(34) = (24)

In general ¢ : Dy — S, is defined by

@(r) = (1234) and ¢(f) = (12)(34)
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@ ker¢ = {0}
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(z4+ w) (mod n) =z (mod n) + w (mod n)
—z+— —z (mod n)

0+~ 0 (mod n)
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L:l. @ z+ z (mod n)

3 @ or1—1 (mod n)
2/\é 3 @ w— w (mod n)
1/1 4 @ z+wr (z+w) (mod n)
0—0 @ (z+w) (mod n) =z (mod n) +w (mod n)
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-3 @ ker¢p = {nz|z € Z} = nZ
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Properties of Homomorphisms

If ¢ : G — H is a homomorphism, then:

Q ¢(ec) =en

Q d(g ) =¢g)!

O #(g") = 9(g)"

Q [¢(g)| divides |g]

@ o&(G) is a subgroup of H
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Proof of Order Property

o romomorphisms [
Q |g| =/ implies en = ¢(ec) = d(g') = d(g)’
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Proof of Order Property

o romomorphisms [
Q |g| =/ implies en = ¢(ec) = d(g') = d(g)’
Q Is(g)l=k<I
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Proof of Order Property

Q lg| =/ implies en = é(ec) = 9(g) = ¢(g)'
Q lp(g)l=k<1
© By previous theorem k|/
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Proof of Order Property

O |g| =/ implies en = ¢(ec) = ¢(g') = ¢(g)’
Q lp(g)l=k<1
© By previous theorem k|/
Q .. |phi(g)| divides |g|

v,
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Properties of Homomorphisms

If ¢ : G — H is a homomorphism, then:

Q ¢(ec) =en

Q d(g ) =¢g)!

O #(g") = 9(g)"

Q [¢(g)| divides |g]

@ o&(G) is a subgroup of H
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Proof of Subgroup Property

Q h,heg(G)CH

D)
~ C.F.Roccalr. (WCSU)
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Proof of Subgroup Property

S Homomarhisms [
Q Mm,h, € p(G)CH
Q M = ¢(g1) and hy = ¢(g2)

Groups and Homomorphisms




Proof of Subgroup Property

- remomonhisms
Q Mm,h, € p(G)CH
Q M = ¢(g1) and hy = ¢(g2)
Q hih: = ¢(g1)d(e2) = P(g182) € $(G)
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Proof of Subgroup Property

Q Mm,h, € p(G)CH
Q M = ¢(g1) and hy = ¢(g2)

Q hih: = ¢(g1)d(e2) = P(g182) € $(G)
Q h'=¢(a) ' =d(g ') € 6(G)
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Proof of Subgroup Property

Q Mm,h, € p(G)CH
Q M = ¢(g1) and hy = ¢(g2)

Q hih: = ¢(g1)d(e2) = P(g182) € $(G)
Q h'=¢(a) ' =d(g ') € 6(G)

@ &(G) is closed under the operation and inverses
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Proof of Subgroup Property

Q Mm,h, € p(G)CH
Q M = ¢(g1) and hy = ¢(g2)

Q hih: = ¢(g1)d(e2) = P(g182) € $(G)
Q h'=¢(a) ' =d(g ') € 6(G)

@ &(G) is closed under the operation and inverses

@ .. 4(G) is a subgroup by the two-step subgroup test
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Properties of Homomorphisms

If ¢ : G — H is a homomorphism, then:

Q ¢(ec) =en

Q d(g ) =¢g)!

O #(g") = 9(g)"

Q [¢(g)| divides |g]

@ o&(G) is a subgroup of H
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A Couple Special Maps

homomorphism.

Given a group G the map ¢(g) = g is called the identity map and is always a
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N s
A Couple Special Maps

homomorphism.

Given a group G the map ¢(g) = g is called the identity map and is always a
homomorphism.

\,

Given groups G and H the map ¢(g) = en is called the trivial map and is always a

v,
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Isomorphisms
P(g) = h.

A homomorphism ¢ : G — H is surjective if for all h € H there exists g € G such that
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s - B
Isomorphisms
P(g) = h.

A homomorphism ¢ : G — H is surjective if for all h € H there exists g € G such that

A homomorphism ¢ : G — H is injective if ¢(g1) = ¢(g2) implies g1 = g».

Groups and Homomorphisms

o




s - B
Isomorphisms
P(g) = h.

A homomorphism ¢ : G — H is surjective if for all h € H there exists g € G such that

A homomorphism ¢ : G — H is injective if ¢(g1) = ¢(g2) implies g1 = g».

An isomorphism of groups is a homomorphism which is injective and surjective.
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Sample Isomorphism

Let
G=3(2)|abez
= b2
which is a group with the operation of vector addition. Then define ¢ : G — G by
(3 2

3a+2b

4a+ 3b> ’
Since the matrix has determinant 1, 3-3 — 2 -4 = 1, the matrix is invertible, and in
general M(V + w) = MV + Mw. Therefore, this is an isomorphism.

4 3><Z>:<
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Sample Non-Isomorphism

Let
G = 2 beZ
= b a’
which is a group with the operation of vector addition. Then define ¢ : G — G by

1 0\ /a\ _ [a
0 0/\b)
homomorphism. Note that

K
All vectors of the form (0, )" map to (0,0)”, so this map is not injective. Similarly, it

=)

beZ},
in linear algebra this is called the Null Space of the linear transformation.
~ C.F.Roccalr. (WCSU)
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is “clearly” not surjective. Thus ¢ is not an isomorphism. However, it is still a
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Kernels, Injective Maps, and Isomorphisms

Given a homomorphism ¢ : G — H, ker¢ = {e} if and only if ¢ is injective.
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Kernels and Injections

@ Assume ¢ is a homomorphism and ker ¢ = {e}
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Kernels and Injections

s - B
@ Assume ¢ is a homomorphism and ker ¢ = {e}
Q ¢(a) = ¢(b) implies p(a)p(b) ' =e
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Kernels and Injections

o emonims
@ Assume ¢ is a homomorphism and ker ¢ = {e}
Q #(a) = ¢(b) implies p(a)p(b) ™ = e

© #(ab') =eand ab™! € kere
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Kernels and Injections

@ Assume ¢ is a homomorphism and ker ¢ = {e}
@ 4(2) = 6(b) implies B(a)p(b) ! = e

Q o#(ab ') =eand ab ! € ker¢

Q@ .ab'=e a=b, and ¢ is injective
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Kernels and Injections

@ Assume ¢ is a homomorphism and ker ¢ = {e}
@ 4(2) = 6(b) implies B(a)p(b) ! = e

Q o#(ab ') =eand ab ! € ker¢

@ .ab'=e a=b, and ¢ is injective
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Kernels and Injections

@ Assume ¢ is a homomorphism and ker ¢ = {e}
@ 4(2) = 6(b) implies B(a)p(b) ! = e

Q o#(ab ') =eand ab ! € ker¢

@ .ab'=e a=b, and ¢ is injective

O
A

@ Assume ¢ is an injective homomorphism
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Kernels and Injections

@ Assume ¢ is a homomorphism and ker ¢ = {e}
@ 4(2) = 6(b) implies B(a)p(b) ! = e

Q o#(ab ') =eand ab ! € ker¢

@ .ab'=e a=b, and ¢ is injective

O
v
@ Assume ¢ is an injective homomorphism

Q 2 € kerg implies ¢(a) = e and ¢(a) = ¢(e)

Groups and Homomorphisms



Kernels and Injections

@ Assume ¢ is a homomorphism and ker ¢ = {e}
@ 4(2) = 6(b) implies B(a)p(b) ! = e

Q o#(ab ') =eand ab ! € ker¢

@ .ab'=e a=b, and ¢ is injective

DJ
@ Assume ¢ is an injective homomorphism
Q@ a < kerg implies ¢(a) = e and ¢(a) = ¢(e)
Q o#(a) = ¢(e) implies a=e
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Kernels and Injections

@ Assume ¢ is a homomorphism and ker ¢ = {e}
@ 4(2) = 6(b) implies B(a)p(b) ! = e

Q o#(ab ') =eand ab ! € ker¢

@ .ab'=e a=b, and ¢ is injective

O
@ Assume ¢ is an injective homomorphism
Q@ a < kerg implies ¢(a) = e and ¢(a) = ¢(e)
© ¢#(a) = ¢(e) implies a=e
Q .. kerp = {e}
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o semorhisms [
Kernels, Injective Maps, and Isomorphisms

Given a homomorphism ¢ : G — H, ker¢ = {e} if and only if ¢ is injective.

Given a homomorphism ¢ : G — H, ¢ : G — ¢(G) is always surjective.
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o semorhisms [
Kernels, Injective Maps, and Isomorphisms

Given a homomorphism ¢ : G — H, ker¢ = {e} if and only if ¢ is injective.

Given a homomorphism ¢ : G — H, ¢ : G — ¢(G) is always surjective.

Given a homomorphism ¢ : G — H, ¢ is injective if and only if G is isomorphic to ¢(G).
~ C.F.RoccalJr. (WCSU)
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Kernels, Injective Maps, and Isomorphisms

Given a homomorphism ¢ : G — H, ker¢ = {e} if and only if ¢ is injective.

Given a homomorphism ¢ : G — H, ¢ : G — ¢(G) is always surjective.

Given a homomorphism ¢ : G — H, ¢ is injective if and only if G is isomorphic to ¢(G).

Given a homomorphism ¢ : G — H, ker¢p = {e} if and only if G is isomorphic to ¢(G).

o =) = = E DA
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@ z—~nzorlw—n
@ w— nw
@ z+wwr n(z+ w) =nz+ nw
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@ —z—n(—z)=—nz

@ 0—n(0)=0

@ ker¢ = {0}
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Z to 7,

L:l. @ z+ z (mod n)

3 @ or1—1 (mod n)
2/\é 3 @ w— w (mod n)
1/1 4 @ z+wr (z+w) (mod n)
0—0 @ (z+w) (mod n) =z (mod n) +w (mod n)

5

-1 @ —z+ —z (mod n)
—2\8 7 0 @ 0+ 0 (mod n)
~_ ]

-3 @ ker¢p = {nz|z € Z} = nZ
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Cyclic Groups, Z, and Z,

If G = (a) is a cyclic group, then

@ G =7 when |G| = oo, and

Q G =7, when |G| = n.
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Cyclic Groups, Z, and Z,

S emeriens I
Q@ G=(a)and |G| =n
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Cyclic Groups, Z, and Z,

S emeriens I
@ G=(a)and |G| =n
@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)
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Cyclic Groups, Z, and Z,

S emeriens I
@ G=(a)and |G| =n
@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)
© ¢(a'd) = (i +j) (mod n) =i (mod n) +j (mod n) = ¢(a’) + (&)

Groups and Homomorphisms
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Cyclic Groups, Z, and Z,

@ G=(a)and |G| =n
@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)
Q ¢(a'd) = (i +j) (mod n) =i (mod n)+j (mod n) = ¢(a') + ¢(&')

Q@ .. ¢ is a homomorphism

Groups and Homomorphisms




Cyclic Groups, Z, and Z,

@ G=(a)and |G| =n

@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)
Q ¢(a'd) = (i +j) (mod n) =i (mod n)+j (mod n) = ¢(a') + ¢(&')

@ .. ¢ is a homomorphism

Q@VicZ,: ¢a)=i
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Cyclic Groups, Z, and Z,

@ G=(a)and |G| =n

@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)
Q ¢(a'd) = (i +j) (mod n) =i (mod n)+j (mod n) = ¢(a') + ¢(&')

@ .. ¢ is a homomorphism
Q@vVicl,: da)=i

Q .. ¢isonto

Groups and Homomorphisms
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Cyclic Groups, Z, and Z,

@ G=(a)and |G| =n

@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)

Q #(a'd) = (i+)) (mod n) =i (mod n) +j (mod n) = ¢(a’) + ¢(2)
@ .. ¢ is a homomorphism

QVicZ,: $p(a)=i

Q@ .. ¢isonto

@ #(a') =0 implies i =0 (mod n), i.e. i =qn

ST Grouss and Homomorphisms
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Cyclic Groups, Z, and Z,

@ G=(a)and |G| =n

@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)

©Q ¢(a'&) = (i +J) (mod n) =i (mod n) +j (mod n) = ¢(a') + ¢(2')
@ .. ¢ is a homomorphism

QVicZ,: $p(a)=i

Q@ .. ¢isonto

@ #(a') =0 implies i =0 (mod n), i.e. i =qgn

Qai=a"=([")=e"=¢

ST Grouss and Homomorphisms
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Cyclic Groups, Z, and Z,

@ G=(a)and |G| =n

@ Define ¢ : G — Z, by ¢(a’) =i (mod n), (or by ¢(a) = 1)

©Q ¢(a'&) = (i +J) (mod n) =i (mod n) +j (mod n) = ¢(a') + ¢(2')
@ .. ¢ is a homomorphism

QVicZ,: $p(a)=i

Q@ .. ¢isonto

@ #(a') =0 implies i =0 (mod n), i.e. i =qgn
Qai=a"=([")=e"=¢

Q .. kerp ={e} and ¢ is 1-1
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Conjugation

Given a group G and g € G, conjugation by g is the map defined by a — gag~*. Note
that:

v,
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Conjugation

Given a group G and g € G, conjugation by g is the map defined by a — gag~*. Note
that:
@ g(ab)g™* = (gag ')(gbg™!); conjugation is a homomorphism

v,
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Conjugation

Given a group G and g € G, conjugation by g is the map defined by a — gag~*. Note
that:

@ g(ab)g™ = (gag ')(gbg™"); conjugation is a homomorphism
@ a=g(g 'ag)g™'; conjugation is surjective

v,
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Conjugation

e
(Conjugation lsomorphism
Given a group G and g € G, conjugation by g is the map defined by a — gag~*. Note
that:
@ g(ab)g™ = (gag ')(gbg™"); conjugation is a homomorphism
@ a=g(g'ag)g™'; conjugation is surjective
® gag’

= e implies a = g 'eg = e; conjugation is injective

v,
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Conjugation

e
(Conjugation lsomorphism
Given a group G and g € G, conjugation by g is the map defined by a — gag~*. Note
that:
@ g(ab)g™ = (gag ')(gbg™"); conjugation is a homomorphism
@ a=g(g'ag)g™'; conjugation is surjective
° gag !
@ ... Conjugation is an isomorphism.

= e implies a = g ~'eg = e; conjugation is injective

v,
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Conjugation

Given a group G and g € G, conjugation by g is the map defined by a — gag*. Note
that:

@ g(ab)g™ = (gag ')(gbg™"); conjugation is a homomorphism

@ a=g(g'ag)g™'; conjugation is surjective
@ gag ! = e implies a = g~ leg = e; conjugation is injective
)

.. Conjugation is an isomorphism.

Given a group G, subgroup H C G, and g € G,

gHg ' = {ghg_l‘h € H}

is also a subgroup of G.
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° a=g(g lag)g™

conjugation is surjective

Conjugation
Given a group G and g € G, conjugation by g is the map defined by a — gag—*. Note
that:

@ g(ab)g™ = (gag~')(gbg™"); conjugation is a homomorphism

@ gag ! = e implies a = g 'eg = e; conjugation is injective
@ . Conjugation is an isomorphism.

Given a group G, subgroup H C G, and g € G,

gHg71 = {ghgil‘h S H}
is also a subgroup of G.(Proved using the 2-step subgroup test.)
& =, <= v
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o omorphisms
Centralizers and Center

a € G which commute with g:

Given a group G and element g € G, the centralizer of g is the set of all elements

Clg) = {alga = ag} = {a|gag " = a}
all elements in G:

Given a group G, the center of G is the set of all elements a € G which commute with

Z(G)={alVg € G: ga=ag} = {a‘Vg €G:gag = a}.
~ C.F.Roccalr. (WCSU)
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Notes on Centralizers and Center

@ The 2-step subgroup test can show that C(g) and Z(G) are subgroups.
@ C(g) is fixed when conjugating by g, gC(g)g™" = C(g).
@ (g) C C(g) and Z(G) C C(g) so centralizers are never empty
@ Z(G) is fixed when conjugating by any g € G, gZ(G)g~! = Z(G)
° Z(6)= () Cle)
geG
@ {e} C Z(G) so the center is never empty
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o e and actons
Groups Acting on Themselves
bijection.

Let G be a group, then for all g € G the map T, : G — G defined by Tg(h) = gh is a
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Groups Acting on Themselves
Let G be a group, then for all g € G the map T, : G — G defined by Tg(h) = gh is a
bijection.
v
Given h, k € G:
Tg(h) = Tg(k) = gh =gk
therefore, T, is injective.

=g 'gh=g 'gk
~ C.F.RoccalJr. (WCSU)

= h =k,
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o e and actons
Groups Acting on Themselves
bijection.
Given h € G:

Let G be a group, then for all g € G the map T, : G — G defined by Tg(h) = gh is a

therefore, T, is surjective.

h= gg_lh

= Tg(gilh)
~ C.F.Roccalr. (WCSU)
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Groups Acting on Themselves
Let G be a group, then for all g € G the map T : G — G defined by T,(h) = gh is a
bijection.

Note Tz(e) = ge = g, so T, is not a homomorphism. However, since it is a bijective
map from G to its self, it is a permutation of the elements of G.
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Example

classes in Ze we get

2476 =2+1{0,1,2,3,4,5}

For a set S and element a recall that aS = {as|s € S}. This may be written a+ S if
addition is the appropriate operation. For example, if we add 2 to the set of equivalence

={240,2+1,24+2,2+3,2+4,2+5}
={2,3,4,5,0,1}
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Example

For a set S and element a recall that aS = {as|s € S}. This may be written a + S if
addition is the appropriate operation. For example, if we add 2 to the set of equivalence
classes in Ze we get

2+4+%Z¢=2+1{0,1,2,3,4,5}
={2+0,2+1,24+2,2+3,2+4,2+5}
={2,3,4,5,0,1}

B w N RO
1B W N = O

u}
8
1
it
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@ Cayley's Theorem
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Cayley's Theorem: Statement

Every group is isomorphic to a group of permutations. \
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Example

For a set S and element a recall that aS = {as|s € S}. This may be written a + S if
addition is the appropriate operation. For example, if we add 2 to the set of equivalence

classes in Ze we get
2+ 7% =2+{0,1,2,3,4,5}
={2+0,2+1,24+2,2+3,2+4,2+5}
= {27 3747 57 07 1}

oA W N = O
G W N RO

2 — Ta(g) =2+ g — (024)(135) € Sg ‘

=] (=)
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Cayley's Theorem: Proof
For each g € G define Tg(x) = gx for all x € G, the set
Te ={T,slg € G}
is a group with the operation of composition.
@ Closure: T, o Th(x) = Tg(Th(x)) = Tg(hx) = ghx = Ten(x)
~ C.F.Roccalr. (WCSU)
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Cayley's Theorem: Proof
For each g € G define Tg(x) = gx for all x € G, the set
Te ={Tslg € G}
is a group with the operation of composition.
@ Closure: Tgo Tp(x) = Tg(Th(x)) = Tg(hx) = ghx = Tgn(x)
Q@ Associative: Ty 0 (Tho Ti) = Tynky = Tienyk = (Tg o Th)o Tk
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Cayley's Theorem: Proof
For each g € G define Tg(x) = gx for all x € G, the set
Te ={Tslg € G}
is a group with the operation of composition.
@ Closure: Tgo Tp(x) = Tg(Th(x)) = Tg(hx) = ghx = Tgn(x)
e Associative: Tg o (Th o Tk) = Tg(hk) = T(gh)k = (Tg o Th) o Tk
Q@ Identity: T o Te(x) = To(Te(x)) = Tg(x)
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Cayley's Theorem: Proof

For each g € G define Tg(x) = gx for all x € G, the set

Te ={Telg € G}

is a group with the operation of composition.

v,

@ Closure: Tgo Tp(x) = Tg(Th(x)) = Tg(hx) = ghx = Tgn(x)
@ Associative: Ty o (Tho Tk) = Tgnk) = Tignpk = (Tg o Th) o Tk
@ Identity: T o Te(x) = To(Te(x)) = Tg(x)

Q Inverse: T, 0 T,—1(x) = gg 7 x = x = Teo(x)

=] (=)
SV Groups and Homomorphisms




Cayley's Theorem: Proof

© A permutation of a set is any bijection from the set to its self
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Cayley's Theorem: Proof

@ A permutation of a set is any bijection from the set to its self
@ Let A(G) be the set of all possible permutations of the elements of G
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Cayley's Theorem: Proof

@ A permutation of a set is any bijection from the set to its self
@ Let A(G) be the set of all possible permutations of the elements of G
© Define p: G — A(G) by g— T,
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Cayley's Theorem: Proof

(Cayley's Theorem.
@ A permutation of a set is any bijection from the set to its self
@ Let A(G) be the set of all possible permutations of the elements of G
© Definep: G — A(G) by g— T,
© By the lemma, Tg = {T,|g € G} is a subgroup of A(G)

O «F = = z wace
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Cayley's Theorem: Proof

(Cayley's Theorem.
@ A permutation of a set is any bijection from the set to its self
@ Let A(G) be the set of all possible permutations of the elements of G
© Definep: G — A(G) by g— T,
© By the lemma, Tg = {T,|g € G} is a subgroup of A(G)
Q o&(gh) = Tgn= Ty 0 T, = ¢(g) o #(h) so ¢ is a homomorphism
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Cayley's Theorem: Proof

@ A permutation of a set is any bijection from the set to its self

@ Let A(G) be the set of all possible permutations of the elements of G
© Definep: G — A(G) by g— T,

© By the lemma, Tg = {T,|g € G} is a subgroup of A(G)

Q@ &(gh) = Tgn = Tgo Th = ¢(g) o ¢(h) so ¢ is a homomorphism

Q ¢(g) = T, = T. implies g = e so that ker¢) = {e} and ¢ is 1-1
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Cayley's Theorem: Proof

@ A permutation of a set is any bijection from the set to its self

@ Let A(G) be the set of all possible permutations of the elements of G
© Definep: G — A(G) by g— T,

© By the lemma, Tg = {T,|g € G} is a subgroup of A(G)

© o&(gh) = Tgn = Tgo Th = ¢(g) o ¢(h) so ¢ is a homomorphism

Q ¢(g) = T, = T. implies g = e so that ker¢) = {e} and ¢ is 1-1

@ .. G is isomorphic to ¢(G) = Ts C A(G)
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Cayley's Theorem: Statement

Every group is isomorphic to a group of permutations.

Every group of order n is isomorphic to a subgroup of the symmetric group S,. I
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o e e
Cayley's Theorem: Proof

© Let A(G) be the set of all possible permutations of the elements of G

O
~ C.F.RoccalJr. (WCSU)
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o e e
Cayley's Theorem: Proof

© Let A(G) be the set of all possible permutations of the elements of G

@ |G| = n means A(G) is a set of permutations of n elements

O
~ C.F.RoccalJr. (WCSU)
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o e e
Cayley's Theorem: Proof

© Let A(G) be the set of all possible permutations of the elements of G

@ |G| = n means A(G) is a set of permutations of n elements
© By “definition” A(G) is isomorphic to S,

O
~ C.F.RoccalJr. (WCSU)
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Cayley's Theorem: Statement

Every group is isomorphic to a group of permutations.

Every group of order n is isomorphic to a subgroup of the symmetric group S,. I

Groups and Homomorphisms

[m]

=




Dr. Chuck Rocca

——
WESTERN
CONNECTICUT
STATE UNIVERSITY
MACRICOSTAS

SCHOOL OF ARTS
& SCIENCES

Groups and Homomorphisms

?




	Homomorphisms
	Isomorphisms
	Groups and Actions
	Cayley's Theorem

