Groups and Homomorphisms

Dr. Chuck Rocca

æ

(日)

C. F. Rocca Jr. (WCSU)

L / 40

Table of Contents

- 2 Isomorphisms
- 3 Groups and Actions
- 4 Cayley's Theorem

æ

E ► < E ►

< □ ▶

< 4³ ► <

Homomorphisms of Groups

Definition

A function ϕ from a group G to a group H is a group homomorphism provided

 $\phi(g_1 *_G g_2) = \phi(g_1) *_H \phi(g_2)$

æ

ヨト ・ヨト

Image: A matrix

Homomorphisms of Groups

Definition

A function ϕ from a group G to a group H is a group homomorphism provided

$$\phi(g_1*_Gg_2)=\phi(g_1)*_H\phi(g_2)$$

Definition

If $\phi: G \to H$ is a homomorphism, then the **kernel of** ϕ is the set

 $ker\phi = \{g \in G | \phi(g) = e_H\}.$

æ

æ

• $r \mapsto (1234)$

æ

æ

r → (1234)
r² → (1234)² = (13)(24)

æ

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$

• $r^3 \mapsto$

है। २९९

æ

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$

æ

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto$

< □ > < □ > < □ > < □ > < □ > < □ >

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

< □ > < □ > < □ > < □ > < □ > < □ >

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

• $f \mapsto (12)(34)$

< □ > < □ > < □ > < □ > < □ > < □ >

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

- *f* → (12)(34)
- $rf \mapsto$

 \rightarrow

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

- $f \mapsto (12)(34)$
- $rf \mapsto (1234)(12)(34) = (13)$

(日) (同) (三) (三)

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

- $f \mapsto (12)(34)$
- $rf \mapsto (1234)(12)(34) = (13)$

(日) (同) (三) (三)

• $r^2 f \mapsto$

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

- $f \mapsto (12)(34)$
- $rf \mapsto (1234)(12)(34) = (13)$

< □ ▶

• $r^2 f \mapsto (13)(24)(12)(34) = (14)(23)$

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

- *f* → (12)(34)
- $rf \mapsto (1234)(12)(34) = (13)$
- $r^2 f \mapsto (13)(24)(12)(34) = (14)(23)$

(日) (同) (三) (三)

• $r^3 f \mapsto$

- r ↦ (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

- $f \mapsto (12)(34)$
- $rf \mapsto (1234)(12)(34) = (13)$
- $r^2 f \mapsto (13)(24)(12)(34) = (14)(23)$

(日) (同) (三) (三)

• $r^3 f \mapsto (1432)(12)(34) = (24)$

- *r* → (1234)
- $r^2 \mapsto (1234)^2 = (13)(24)$
- $r^3 \mapsto (1234)^3 = (1432)$
- $r^4 \mapsto (1234)^4 = (1) = e$

In general $\phi: D_4 \to S_4$ is defined by

$$\phi(r) = (1234)$$
 and $\phi(f) = (12)(34)$

• $f \mapsto (12)(34)$

• $rf \mapsto (1234)(12)(34) = (13)$

• $r^3 f \mapsto (1432)(12)(34) = (24)$

• $r^2 f \mapsto (13)(24)(12)(34) = (14)(23)$

(日) (同) (三) (三)

• $z \mapsto nz$ or $1 \mapsto n$

C. F. Rocca Jr. (WCSU)

うへで 5/40

3

• $z \mapsto nz$ or $1 \mapsto n$

• $w \mapsto nw$

3

• $z \mapsto nz$ or $1 \mapsto n$

- $w \mapsto nw$
- $z + w \mapsto n(z + w) = nz + nw$

3

(日)

• $z \mapsto nz$ or $1 \mapsto n$

• $-z \mapsto n(-z) = -nz$

<ロト < 四ト < 巨ト < 巨ト -

• $z + w \mapsto n(z + w) = nz + nw$

- $z \mapsto nz$ or $1 \mapsto n$
- $w \mapsto nw$
- $z + w \mapsto n(z + w) = nz + nw$

• $-z \mapsto n(-z) = -nz$

• $0 \mapsto n(0) = 0$

- $z \mapsto nz$ or $1 \mapsto n$
- $w \mapsto nw$
- $z + w \mapsto n(z + w) = nz + nw$

• $-z \mapsto n(-z) = -nz$

- $0 \mapsto n(0) = 0$
- $ker\phi = \{0\}$

æ

• $z \mapsto z \pmod{n}$ • or $1 \mapsto 1 \pmod{n}$

æ

- $z \mapsto z \pmod{n}$
- or $1 \mapsto 1 \pmod{n}$
- $w \mapsto w \pmod{n}$

æ

- $z \mapsto z \pmod{n}$
- or $1 \mapsto 1 \pmod{n}$
- $w \mapsto w \pmod{n}$
- $z + w \mapsto (z + w) \pmod{n}$

æ

- $z \mapsto z \pmod{n}$
- or $1 \mapsto 1 \pmod{n}$
- $w \mapsto w \pmod{n}$
- $z + w \mapsto (z + w) \pmod{n}$
- $(z+w) \pmod{n} = z \pmod{n} + w \pmod{n}$

(日) (同) (三) (三)

- $z \mapsto z \pmod{n}$
- or $1 \mapsto 1 \pmod{n}$
- $w \mapsto w \pmod{n}$
- $z + w \mapsto (z + w) \pmod{n}$
- $(z+w) \pmod{n} = z \pmod{n} + w \pmod{n}$

(日) (同) (三) (三)

• $-z \mapsto -z \pmod{n}$

- $z \mapsto z \pmod{n}$
- or $1 \mapsto 1 \pmod{n}$
- $w \mapsto w \pmod{n}$
- $z + w \mapsto (z + w) \pmod{n}$
- $(z+w) \pmod{n} = z \pmod{n} + w \pmod{n}$

(日) (同) (三) (三)

- $-z \mapsto -z \pmod{n}$
- $0 \mapsto 0 \pmod{n}$

- $z \mapsto z \pmod{n}$
- or $1 \mapsto 1 \pmod{n}$
- $w \mapsto w \pmod{n}$
- $z + w \mapsto (z + w) \pmod{n}$
- $(z+w) \pmod{n} = z \pmod{n} + w \pmod{n}$

(日) (同) (三) (三)

- $-z \mapsto -z \pmod{n}$
- $0 \mapsto 0 \pmod{n}$
- ker $\phi = \{nz | z \in \mathbb{Z}\} = n\mathbb{Z}$

A Non-Example: \mathbb{Z}_3 into \mathbb{Z}_6

A Non-Example: \mathbb{Z}_3 into \mathbb{Z}_6

• $1 \mapsto 1$

æ

- $e \mapsto 0$
- $1 \mapsto 1$
- $\bullet \ 2\mapsto 2$

- $e \mapsto 0$
- $1 \mapsto 1$
- $\bullet \ 2\mapsto 2$
- $3 = 1 + 2 \mapsto 1 + 2 = 3$

- $e \mapsto 0$
- $1 \mapsto 1$
- $\bullet \ 2\mapsto 2$
- $3 = 1 + 2 \mapsto 1 + 2 = 3$
- But $3 \equiv 0 \pmod{3} \mapsto 0$

• $|D_3| = |\mathbb{Z}_6| = 6$

3

• $|D_3| = |\mathbb{Z}_6| = 6$

• $e \mapsto 0$

3

- $|D_3| = |\mathbb{Z}_6| = 6$
- $e \mapsto 0$
- $r^i \mapsto 2i$

æ

- $|D_3| = |\mathbb{Z}_6| = 6$
- $e \mapsto 0$
- $r^i \mapsto 2i$
- $f \mapsto 3$

æ

- $|D_3| = |\mathbb{Z}_6| = 6$
- $e \mapsto 0$
- $r^i \mapsto 2i$
- $f \mapsto 3$
- $rf \mapsto 2+3=5$

æ

- $|D_3| = |\mathbb{Z}_6| = 6$
- $e \mapsto 0$
- $r^i \mapsto 2i$
- $f \mapsto 3$
- $rf \mapsto 2 + 3 = 5$
- $fr^2 \mapsto 3+4=7 \pmod{6} = 1$

- $|D_3| = |\mathbb{Z}_6| = 6$
- $e \mapsto 0$
- $r^i \mapsto 2i$
- $f \mapsto 3$
- $rf \mapsto 2+3=5$
- $fr^2 \mapsto 3+4=7 \pmod{6} = 1$
- But $rf = fr^2$

- $|D_3| = |\mathbb{Z}_6| = 6$
- $e \mapsto 0$
- $r^i \mapsto 2i$
- $f \mapsto 3$
- $rf \mapsto 2+3=5$
- $fr^2 \mapsto 3+4=7 \pmod{6} = 1$
- But $rf = fr^2$
- D_n is non-abelian and \mathbb{Z}_n is abelian

æ

(日) (同) (三) (三)

Properties of Homomorphisms

Theorem

If $\phi : G \to H$ is a homomorphism, then: **1** $\phi(e_G) = e_H$ **2** $\phi(g^{-1}) = \phi(g)^{-1}$ **3** $\phi(g^n) = \phi(g)^n$ **4** $|\phi(g)|$ divides |g|**5** $\phi(G)$ is a subgroup of H

æ

(日) (同) (三) (三)

C. F. Rocca Jr. (WCSU)

Proof.

 $|g| = l \text{ implies } e_H = \phi(e_G) = \phi(g') = \phi(g)'$

æ

C. F. Rocca Jr. (WCSU)

.0 / 40

Proof.

C. F. Rocca Jr. (WCSU)

.0 / 40

æ

Proof.

 $|g| = l \text{ implies } e_H = \phi(e_G) = \phi(g') = \phi(g)'$

2
$$|\phi(g)| = k \leq$$

3 By previous theorem k|I

C. F. Rocca Jr. (WCSU)

10 / 40

æ

Proof.

- $|g| = l \text{ implies } e_H = \phi(e_G) = \phi(g') = \phi(g)'$
- $|\phi(g)| = k \leq l$
- 3 By previous theorem k|I
- ④ ∴ |phi(g)| divides |g|

æ

Properties of Homomorphisms

Theorem

If $\phi : G \to H$ is a homomorphism, then: **1** $\phi(e_G) = e_H$ **2** $\phi(g^{-1}) = \phi(g)^{-1}$ **3** $\phi(g^n) = \phi(g)^n$ **4** $|\phi(g)|$ divides |g|**5** $\phi(G)$ is a subgroup of H

æ

C. F. Rocca Jr. (WCSU)

Proof.

C. F. Rocca Jr. (WCSU)

æ

æ

C. F. Rocca Jr. (WCSU)

2/40

Proof. **1** $h_1, h_2 \in \phi(G) \subseteq H$ **2** $h_1 = \phi(g_1) \text{ and } h_2 = \phi(g_2)$ **3** $h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2) \in \phi(G)$

Image: A matrix

æ

.

Proof. a) $h_1, h_2 \in \phi(G) \subseteq H$ b) $h_1 = \phi(g_1) \text{ and } h_2 = \phi(g_2)$ b) $h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2) \in \phi(G)$ b) $h_1^{-1} = \phi(g_1)^{-1} = \phi(g_1^{-1}) \in \phi(G)$

æ

(日)

C. F. Rocca Jr. (WCSU)

Proof. a) $h_1, h_2 \in \phi(G) \subseteq H$ b) $h_1 = \phi(g_1) \text{ and } h_2 = \phi(g_2)$ b) $h_1 h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2) \in \phi(G)$ c) $h_1^{-1} = \phi(g_1)^{-1} = \phi(g_1^{-1}) \in \phi(G)$ c) $\phi(G)$ is closed under the operation and inverses

э

(日) (同) (三) (三)

Proof. 1 $h_1, h_2 \in \phi(G) \subseteq H$ 2 $h_1 = \phi(g_1) \text{ and } h_2 = \phi(g_2)$ 3 $h_1h_2 = \phi(g_1)\phi(g_2) = \phi(g_1g_2) \in \phi(G)$ 4 $h_1^{-1} = \phi(g_1)^{-1} = \phi(g_1^{-1}) \in \phi(G)$ 5 $\phi(G)$ is closed under the operation and inverses 5 $\therefore \phi(G)$ is a subgroup by the two-step subgroup test

э

(日) (同) (三) (三)

Properties of Homomorphisms

Theorem

If $\phi : G \to H$ is a homomorphism, then: **1** $\phi(e_G) = e_H$ **2** $\phi(g^{-1}) = \phi(g)^{-1}$ **3** $\phi(g^n) = \phi(g)^n$ **4** $|\phi(g)|$ divides |g|**5** $\phi(G)$ is a subgroup of H

æ

C. F. Rocca Jr. (WCSU)

A Couple Special Maps

Theorem

Given a group G the map $\phi(g) = g$ is called the **identity map** and is always a homomorphism.

æ

E ► < E ►

Image: Image:

A Couple Special Maps

Theorem

Given a group G the map $\phi(g) = g$ is called the **identity map** and is always a homomorphism.

Theorem

Given groups G and H the map $\phi(g) = e_H$ is called the **trivial map** and is always a homomorphism.

э

▶ ∢ ∃ ▶

C. F. Rocca Jr. (WCSU)

< □ > < A

Table of Contents

- 3 Groups and Actions
- 4 Cayley's Theorem

æ

E ► < E ►

.

Image: A matrix

C. F. Rocca Jr. (WCSU)

Isomorphisms

Definition (Surjective)

A homomorphism $\phi : G \to H$ is surjective if for all $h \in H$ there exists $g \in G$ such that $\phi(g) = h$.

æ

ヨト ・ヨト

Image: A mathematical states and a mathem

Isomorphisms

Definition (Surjective)

A homomorphism $\phi : G \to H$ is surjective if for all $h \in H$ there exists $g \in G$ such that $\phi(g) = h$.

Definition (Injective)

A homomorphism $\phi : G \to H$ is **injective** if $\phi(g_1) = \phi(g_2)$ implies $g_1 = g_2$.

æ

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Isomorphisms

Definition (Surjective)

A homomorphism $\phi : G \to H$ is surjective if for all $h \in H$ there exists $g \in G$ such that $\phi(g) = h$.

Definition (Injective)

A homomorphism $\phi : G \to H$ is **injective** if $\phi(g_1) = \phi(g_2)$ implies $g_1 = g_2$.

Definition (Isomorphism)

An isomorphism of groups is a homomorphism which is injective and surjective.

Sample Isomorphism

Example

Let

$$G = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a, b \in \mathbb{Z} \right\}$$

which is a group with the operation of vector addition. Then define $\phi: \mathcal{G} \to \mathcal{G}$ by

$$\begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3a+2b \\ 4a+3b \end{pmatrix}.$$

Since the matrix has determinant 1, $3 \cdot 3 - 2 \cdot 4 = 1$, the matrix is invertible, and in general $M(\vec{v} + \vec{w}) = M\vec{v} + M\vec{w}$. Therefore, this is an isomorphism.

э

3 1 4 3 1

Image: Image:

Sample Non-Isomorphism

Non-Example

Let

$$G = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \middle| a, b \in \mathbb{Z} \right\}$$

which is a group with the operation of vector addition. Then define $\phi: \mathcal{G}
ightarrow \mathcal{G}$ by

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix}.$$

All vectors of the form $(0, b)^T$ map to $(0, 0)^T$, so this map is not injective. Similarly, it is "clearly" not surjective. Thus ϕ is not an isomorphism. However, it is still a homomorphism. Note that

$$ker\phi = \left\{ \begin{pmatrix} 0 \\ b \end{pmatrix} \middle| b \in \mathbb{Z}
ight\},$$

in linear algebra this is called the Null Space of the linear transformation.

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi : G \to H$, ker $\phi = \{e\}$ if and only if ϕ is injective.

æ

< □ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Kernels and Injections

æ

C. F. Rocca Jr. (WCSU)

Kernels and Injections

æ

C. F. Rocca Jr. (WCSU)
Only If.

- **()** Assume ϕ is a homomorphism and ker $\phi = \{e\}$
- 2 $\phi(a) = \phi(b)$ implies $\phi(a)\phi(b)^{-1} = e$
- $(ab^{-1}) = e \text{ and } ab^{-1} \in ker\phi$

æ

Only If.

C. F. Rocca Jr. (WCSU)

æ

(日)

C. F. Rocca Jr. (WCSU)

Only If.

Assume φ is a homomorphism and ker φ = {e}
φ(a) = φ(b) implies φ(a)φ(b)⁻¹ = e
φ(ab⁻¹) = e and ab⁻¹ ∈ kerφ
∴ ab⁻¹ = e, a = b, and φ is injective

lf.

æ

(日)

Only If.

lf.

æ

Only If.

lf.

- **1** Assume ϕ is an injective homomorphism
- 2 $a \in ker\phi$ implies $\phi(a) = e$ and $\phi(a) = \phi(e)$

æ

Only If.

lf.

- Assume φ is an injective homomorphism
 a ∈ kerφ implies φ(a) = e and φ(a) = φ(e)
- (a) $\phi(a) = \phi(e)$ implies a = e

æ

Only If.

lf.

Assume \$\phi\$ is an injective homomorphism
a ∈ ker\$\phi\$ implies \$\phi(a) = e\$ and \$\phi(a) = \phi(e)\$
\$\phi(a) = \phi(e)\$ implies \$a = e\$
\$\there\$: ker\$\phi = {e}\$

C. F. Rocca Jr. (WCSU)

æ

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi : G \to H$, ker $\phi = \{e\}$ if and only if ϕ is injective.

Theorem

Given a homomorphism $\phi : G \to H$, $\phi : G \to \phi(G)$ is always surjective.

э

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi : G \to H$, ker $\phi = \{e\}$ if and only if ϕ is injective.

Theorem

Given a homomorphism $\phi : G \to H$, $\phi : G \to \phi(G)$ is always surjective.

Theorem

Given a homomorphism $\phi : G \to H$, ϕ is injective if and only if G is isomorphic to $\phi(G)$.

イロト イヨト イヨト

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi : G \to H$, ker $\phi = \{e\}$ if and only if ϕ is injective.

Theorem

Given a homomorphism $\phi : G \to H$, $\phi : G \to \phi(G)$ is always surjective.

Theorem

Given a homomorphism $\phi : G \to H$, ϕ is injective if and only if G is isomorphic to $\phi(G)$.

Corollary

Given a homomorphism $\phi : G \to H$, ker $\phi = \{e\}$ if and only if G is isomorphic to $\phi(G)$.

イロト イヨト イヨト

 $\mathbb Z$ to $n\mathbb Z$

- $z \mapsto nz$ or $1 \mapsto n$
- $w \mapsto nw$
- $z + w \mapsto n(z + w) = nz + nw$

• $-z \mapsto n(-z) = -nz$

- $0 \mapsto n(0) = 0$
- $ker\phi = \{0\}$

\mathbb{Z} to \mathbb{Z}_n

- $z \mapsto z \pmod{n}$
- or $1 \mapsto 1 \pmod{n}$
- $w \mapsto w \pmod{n}$
- $z + w \mapsto (z + w) \pmod{n}$
- $(z+w) \pmod{n} = z \pmod{n} + w \pmod{n}$

(日) (同) (三) (三)

- $-z \mapsto -z \pmod{n}$
- $0 \mapsto 0 \pmod{n}$
- ker $\phi = \{ nz | z \in \mathbb{Z} \} = n\mathbb{Z}$

Theorem

If $G = \langle a \rangle$ is a cyclic group, then **1** $G \cong \mathbb{Z}$ when $|G| = \infty$, and **2** $G \cong \mathbb{Z}_n$ when |G| = n.

C. F. Rocca Jr. (WCSU)

Image: A matrix

.

3 1 4 3 1

Part 2.

æ

C. F. Rocca Jr. (WCSU)

Part 2.

 $G = \langle a \rangle \text{ and } |G| = n$

2 Define $\phi: G \to \mathbb{Z}_n$ by $\phi(a^i) = i \pmod{n}$, (or by $\phi(a) = 1$)

æ

Part 2.

- $\bigcirc \ G = \langle a \rangle \text{ and } |G| = n$
- 2 Define $\phi: G \to \mathbb{Z}_n$ by $\phi(a^i) = i \pmod{n}$, (or by $\phi(a) = 1$)
- **3** $\phi(a^i a^j) = (i+j) \pmod{n} = i \pmod{n} + j \pmod{n} = \phi(a^i) + \phi(a^j)$

æ

Part 2.

- $G = \langle a \rangle \text{ and } |G| = n$
- 2 Define $\phi: G \to \mathbb{Z}_n$ by $\phi(a^i) = i \pmod{n}$, (or by $\phi(a) = 1$)
- **3** $\phi(a^i a^j) = (i+j) \pmod{n} = i \pmod{n} + j \pmod{n} = \phi(a^i) + \phi(a^j)$
- O $\therefore \phi$ is a homomorphism

Image: A matrix

э

▶ ∢ ∃ ▶

Part 2.

- $G = \langle a \rangle \text{ and } |G| = n$
- 2 Define $\phi: G \to \mathbb{Z}_n$ by $\phi(a^i) = i \pmod{n}$, (or by $\phi(a) = 1$)
- **3** $\phi(a^i a^j) = (i+j) \pmod{n} = i \pmod{n} + j \pmod{n} = \phi(a^i) + \phi(a^j)$
- $\textcircled{9} \ \therefore \ \phi \ \text{is a homomorphism}$

э

Image: A matrix

- E + - E +

Part 2.

- G = ⟨a⟩ and |G| = n
 Define φ : G → Z_n by φ(aⁱ) = i (mod n), (or by φ(a) = 1)
 φ(aⁱa^j) = (i + j) (mod n) = i (mod n) + j (mod n) = φ(aⁱ) + φ(a^j)
 ∴ φ is a homomorphism
 ∀i ∈ Z_n : φ(aⁱ) = i
- $\textcircled{0} \ \therefore \phi \text{ is onto}$

Image: A matrix and a matrix

▶ ∢ ≣ ▶

Part 2.

Part 2.

< ロト < 同ト < 三ト < 三ト

Part 2.

< ロト < 同ト < 三ト < 三ト

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto gag^{-1}$. Note that:

æ

E ► < E ►

Image: A start and a start a start

Image: A matrix

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto gag^{-1}$. Note that:

• $g(ab)g^{-1} = (gag^{-1})(gbg^{-1})$; conjugation is a homomorphism

æ

(日)

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto gag^{-1}$. Note that:

- $g(ab)g^{-1} = (gag^{-1})(gbg^{-1})$; conjugation is a homomorphism
- $a = g(g^{-1}ag)g^{-1}$; conjugation is surjective

э

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto gag^{-1}$. Note that:

- $g(ab)g^{-1} = (gag^{-1})(gbg^{-1})$; conjugation is a homomorphism
- $a = g(g^{-1}ag)g^{-1}$; conjugation is surjective
- $gag^{-1} = e$ implies $a = g^{-1}eg = e$; conjugation is injective

э

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto gag^{-1}$. Note that:

- g(ab)g⁻¹ = (gag⁻¹)(gbg⁻¹); conjugation is a homomorphism
- $a = g(g^{-1}ag)g^{-1}$; conjugation is surjective
- $gag^{-1} = e$ implies $a = g^{-1}eg = e$; conjugation is injective
- ... Conjugation is an isomorphism.

э

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto gag^{-1}$. Note that:

- g(ab)g⁻¹ = (gag⁻¹)(gbg⁻¹); conjugation is a homomorphism
- $a = g(g^{-1}ag)g^{-1}$; conjugation is surjective
- $gag^{-1} = e$ implies $a = g^{-1}eg = e$; conjugation is injective
- ∴ Conjugation is an isomorphism.

Theorem

Given a group G, subgroup $H \subseteq G$, and $g \in G$,

$$gHg^{-1} = \left\{ ghg^{-1} \middle| h \in H \right\}$$

is also a subgroup of G.

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto gag^{-1}$. Note that:

- g(ab)g⁻¹ = (gag⁻¹)(gbg⁻¹); conjugation is a homomorphism
- $a = g(g^{-1}ag)g^{-1}$; conjugation is surjective
- $gag^{-1} = e$ implies $a = g^{-1}eg = e$; conjugation is injective
- .:. Conjugation is an isomorphism.

Theorem

Given a group G, subgroup $H \subseteq G$, and $g \in G$,

$$gHg^{-1} = \left\{ ghg^{-1} \middle| h \in H \right\}$$

is also a subgroup of G.(Proved using the 2-step subgroup test.)

Centralizers and Center

Definition (Centralizer)

Given a group G and element $g \in G$, the **centralizer of g** is the set of all elements $a \in G$ which commute with g:

$$\mathcal{C}(g) = \{ \mathsf{a} | \mathsf{g}\mathsf{a} = \mathsf{a}\mathsf{g} \} = \left\{ \mathsf{a} \Big| \mathsf{g}\mathsf{a}\mathsf{g}^{-1} = \mathsf{a}
ight\}.$$

Definition (Center)

Given a group G, the center of G is the set of all elements $a \in G$ which commute with all elements in G:

$$Z(G) = \{ \mathsf{a} | \forall \mathsf{g} \in G : \mathsf{ga} = \mathsf{ag} \} = \left\{ \mathsf{a} \middle| \forall \mathsf{g} \in G : \mathsf{gag}^{-1} = \mathsf{a}
ight\}.$$

< <p>I I

э

Notes on Centralizers and Center

Notes

- The 2-step subgroup test can show that C(g) and Z(G) are subgroups.
- C(g) is fixed when conjugating by $g, gC(g)g^{-1} = C(g)$.
- $\langle g \rangle \subseteq C(g)$ and $Z(G) \subseteq C(g)$ so centralizers are never empty
- Z(G) is fixed when conjugating by any $g \in G$, $gZ(G)g^{-1} = Z(G)$
- $Z(G) = \bigcap_{g \in G} C(g)$
- $\{e\} \subset Z(G)$ so the center is never empty

э

(日) (同) (三) (三)

Table of Contents

Homomorphisms

4 Cayley's Theorem

æ

E ► < E ►

< □ ▶

< 4³ ► <

C. F. Rocca Jr. (WCSU)

Theorem

Let G be a group, then for all $g \in G$ the map $T_g : G \to G$ defined by $T_g(h) = gh$ is a bijection.

C. F. Rocca Jr. (WCSU)

æ

Theorem

Let G be a group, then for all $g \in G$ the map $T_g : G \to G$ defined by $T_g(h) = gh$ is a bijection.

Injective.

Given $h, k \in G$:

$$T_{g}(h) = T_{g}(k) \Rightarrow gh = gk$$

 $\Rightarrow g^{-1}gh = g^{-1}gk$
 $\Rightarrow h = k,$

therefore, T_g is injective.

Image: A matrix

.

3 K 4 3 K

Theorem

Let G be a group, then for all $g \in G$ the map $T_g : G \to G$ defined by $T_g(h) = gh$ is a bijection.

Surjective.

Given $h \in G$:

$$h = gg^{-1}h$$
$$= T_g(g^{-1}h)$$

therefore, T_g is surjective.

Image: Image:

∃ ▶ ∢ ∃ ▶

Theorem

Let G be a group, then for all $g \in G$ the map $T_g : G \to G$ defined by $T_g(h) = gh$ is a bijection.

Not a Homomorphism

Note $T_g(e) = ge = g$, so T_g is not a homomorphism. However, since it is a bijective map from G to its self, it is a permutation of the elements of G.

< ロト < 同ト < 三ト < 三ト
Example

\mathbb{Z}_n acting on its self

For a set S and element a recall that $aS = \{as | s \in S\}$. This may be written a + S if addition is the appropriate operation. For example, if we add 2 to the set of equivalence classes in \mathbb{Z}_6 we get

$$\begin{array}{l} 2+\mathbb{Z}_6=2+\{0,1,2,3,4,5\}\\ \\ =\{2+0,2+1,2+2,2+3,2+4,2+5\}\\ \\ =\{2,3,4,5,0,1\}\end{array}$$

< □ ▶

æ

Example

\mathbb{Z}_n acting on its self

For a set S and element a recall that $aS = \{as | s \in S\}$. This may be written a + S if addition is the appropriate operation. For example, if we add 2 to the set of equivalence classes in \mathbb{Z}_6 we get

$$\begin{aligned} & 2 + \mathbb{Z}_6 = 2 + \{0, 1, 2, 3, 4, 5\} \\ & = \{2 + 0, 2 + 1, 2 + 2, 2 + 3, 2 + 4, 2 + 5\} \\ & = \{2, 3, 4, 5, 0, 1\} \end{aligned}$$

æ

Table of Contents

Homomorphisms

2 Isomorphisms

3 Groups and Actions

4 Cayley's Theorem

C. F. Rocca Jr. (WCSU)

æ

E ► < E ►

Cayley's Theorem: Statement

Theorem (Cayley's Theorem)

Every group is isomorphic to a group of permutations.

C. F. Rocca Jr. (WCSU)

æ

Example

\mathbb{Z}_n acting on its self

For a set S and element a recall that $aS = \{as | s \in S\}$. This may be written a + S if addition is the appropriate operation. For example, if we add 2 to the set of equivalence classes in \mathbb{Z}_6 we get

$$\begin{array}{l} 2 + \mathbb{Z}_6 = 2 + \{0, 1, 2, 3, 4, 5\} \\ \\ = \{2 + 0, 2 + 1, 2 + 2, 2 + 3, 2 + 4, 2 + 5\} \\ \\ = \{2, 3, 4, 5, 0, 1\} \end{array}$$

 $2 \longrightarrow T_2(g) = 2 + g \longrightarrow (024)(135) \in S_6$

э

< ロト < 同ト < 三ト < 三ト

Lemma

For each $g \in G$ define $T_g(x) = gx$ for all $x \in G$, the set

 $T_G = \{T_g | g \in G\}$

is a group with the operation of composition.

Proof. O Closure: $T_g \circ T_h(x) = T_g(T_h(x)) = T_g(hx) = ghx = T_{gh}(x)$

э

Lemma

For each $g \in G$ define $T_g(x) = gx$ for all $x \in G$, the set

 $T_G = \{T_g | g \in G\}$

is a group with the operation of composition.

Proof.

Olosure:
$$T_g \circ T_h(x) = T_g(T_h(x)) = T_g(hx) = ghx = T_{gh}(x)$$

2 Associative: $T_g \circ (T_h \circ T_k) = T_{g(hk)} = T_{(gh)k} = (T_g \circ T_h) \circ T_k$

э

A B M A B M

Image: A matrix

Lemma

For each $g \in G$ define $T_g(x) = gx$ for all $x \in G$, the set

 $T_G = \{T_g | g \in G\}$

is a group with the operation of composition.

Proof.

1 Closure:
$$T_g \circ T_h(x) = T_g(T_h(x)) = T_g(hx) = ghx = T_{gh}(x)$$

- 2 Associative: $T_g \circ (T_h \circ T_k) = T_{g(hk)} = T_{(gh)k} = (T_g \circ T_h) \circ T_k$
- 3 Identity: $T_g \circ T_e(x) = T_g(T_e(x)) = T_g(x)$

Lemma

For each $g \in G$ define $T_g(x) = gx$ for all $x \in G$, the set

$$T_G = \{T_g | g \in G\}$$

is a group with the operation of composition.

Proof.

Olosure:
$$T_g \circ T_h(x) = T_g(T_h(x)) = T_g(hx) = ghx = T_{gh}(x)$$

2 Associative:
$$T_g \circ (T_h \circ T_k) = T_{g(hk)} = T_{(gh)k} = (T_g \circ T_h) \circ T_k$$

3 Identity:
$$T_g \circ T_e(x) = T_g(T_e(x)) = T_g(x)$$

• Inverse:
$$T_g \circ T_{g^{-1}}(x) = gg^{-1}x = x = T_e(x)$$

Image: Image:

글▶ 글

∃ ▶ ∢

Cayley's Theorem.

A permutation of a set is any bijection from the set to its self

Image: A matrix

æ

E ► < E ►

-

Cayley's Theorem.

- A permutation of a set is any bijection from the set to its self
- 2 Let A(G) be the set of all possible permutations of the elements of G

< □ ▶

æ

▶ ∢ ∃ ▶

Cayley's Theorem.

- A permutation of a set is any bijection from the set to its self
- 2 Let A(G) be the set of all possible permutations of the elements of G
- **3** Define $\phi: G \to A(G)$ by $g \mapsto T_g$

æ

3 K 4 3 K

Cayley's Theorem.

- A permutation of a set is any bijection from the set to its self
- 2 Let A(G) be the set of all possible permutations of the elements of G
- **3** Define $\phi: G \to A(G)$ by $g \mapsto T_g$
- **(4)** By the lemma, $T_G = \{T_g | g \in G\}$ is a subgroup of A(G)

э

- * E • * E •

Cayley's Theorem.

- A permutation of a set is any bijection from the set to its self
- 2 Let A(G) be the set of all possible permutations of the elements of G
- **3** Define $\phi: G \to A(G)$ by $g \mapsto T_g$
- By the lemma, $T_G = \{T_g | g \in G\}$ is a subgroup of A(G)
- **(** $\phi(gh) = T_{gh} = T_g \circ T_h = \phi(g) \circ \phi(h)$ so ϕ is a homomorphism

э

(日) (同) (三) (三)

Cayley's Theorem.

- A permutation of a set is any bijection from the set to its self
- 2 Let A(G) be the set of all possible permutations of the elements of G
- **3** Define $\phi: G \to A(G)$ by $g \mapsto T_g$
- By the lemma, $T_G = \{T_g | g \in G\}$ is a subgroup of A(G)
- **(** $\phi(gh) = T_{gh} = T_g \circ T_h = \phi(g) \circ \phi(h)$ so ϕ is a homomorphism
- **(** $\phi(g) = T_g = T_e$ implies g = e so that $ker\phi = \{e\}$ and ϕ is 1-1

э

・ロト ・回ト ・ヨト ・ヨト

Cayley's Theorem.

- A permutation of a set is any bijection from the set to its self
- 2 Let A(G) be the set of all possible permutations of the elements of G
- **3** Define $\phi: G \to A(G)$ by $g \mapsto T_g$
- **(4)** By the lemma, $T_G = \{T_g | g \in G\}$ is a subgroup of A(G)
- **5** $\phi(gh) = T_{gh} = T_g \circ T_h = \phi(g) \circ \phi(h)$ so ϕ is a homomorphism
- $\phi(g) = T_g = T_e$ implies g = e so that $ker\phi = \{e\}$ and ϕ is 1-1
- \bigcirc : G is isomorphic to $\phi(G) = T_G \subseteq A(G)$

э

(日) (同) (三) (三)

Cayley's Theorem: Statement

Theorem (Cayley's Theorem)

Every group is isomorphic to a group of permutations.

Corollary

Every group of order n is isomorphic to a subgroup of the symmetric group S_n .

э

Corollary.

• Let A(G) be the set of all possible permutations of the elements of G

C. F. Rocca Jr. (WCSU)

Groups and Homomorphisms

Image: A matrix

38 / 40

æ

E ► < E ►

.

Corollary.

• Let A(G) be the set of all possible permutations of the elements of G

2 |G| = n means A(G) is a set of permutations of *n* elements

C. F. Rocca Jr. (WCSU)

< □ ▶

æ

▶ ∢ ∃ ▶

Corollary.

- Let A(G) be the set of all possible permutations of the elements of G
- 2 |G| = n means A(G) is a set of permutations of *n* elements
- **3** By "definition" A(G) is isomorphic to S_n

< □ ▶

æ

▶ ∢ ∃ ▶

Cayley's Theorem: Statement

Theorem (Cayley's Theorem)

Every group is isomorphic to a group of permutations.

Corollary

Every group of order n is isomorphic to a subgroup of the symmetric group S_n .

C. F. Rocca Jr. (WCSU)

39 / 40

э

Groups and Homomorphisms

Dr. Chuck Rocca

æ

C. F. Rocca Jr. (WCSU)