Groups and Homomorphisms

Dr. Chuck Rocca

WESTERN

 CONNECTICUT STATE UNIVERSITYMACRICOSTAS
SCHOOL OF ARTS 8 SCIENCES
C. F. Rocca Jr. (WCSU)

Groups and Homomorphisms

Table of Contents

(1) Homomorphisms
(2) Isomorphisms
(3) Groups and Actions

4 Cayley's Theorem

Homomorphisms of Groups

Definition

A function ϕ from a group G to a group H is a group homomorphism provided

$$
\phi\left(g_{1} *_{G} g_{2}\right)=\phi\left(g_{1}\right) *_{H} \phi\left(g_{2}\right)
$$

Homomorphisms of Groups

Definition

A function ϕ from a group G to a group H is a group homomorphism provided

$$
\phi\left(g_{1} *_{G} g_{2}\right)=\phi\left(g_{1}\right) *_{H} \phi\left(g_{2}\right)
$$

Definition

If $\phi: G \rightarrow H$ is a homomorphism, then the kernel of ϕ is the set

$$
\operatorname{ker} \phi=\left\{g \in G \mid \phi(g)=e_{H}\right\}
$$

D_{n} to S_{n}

D_{n} to S_{n}

- $r \mapsto(1234)$

D_{n} to S_{n}

- $r \mapsto(1234)$
- $r^{2} \mapsto$

D_{n} to S_{n}

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$

D_{n} to S_{n}

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto$

D_{n} to S_{n}

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto(1234)^{3}=(1432)$

D_{n} to S_{n}

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto$

D_{n} to S_{n}

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $f \mapsto(12)(34)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $f \mapsto(12)(34)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$
- rf \mapsto

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $f \mapsto(12)(34)$
- $r f \mapsto(1234)(12)(34)=(13)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $f \mapsto(12)(34)$
- $r f \mapsto(1234)(12)(34)=(13)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{2} f \mapsto$
- $r^{4} \mapsto(1234)^{4}=(1)=e$

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $f \mapsto(12)(34)$
- $r f \mapsto(1234)(12)(34)=(13)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{2} f \mapsto(13)(24)(12)(34)=(14)(23)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$
- $f \mapsto(12)(34)$
- rf $\mapsto(1234)(12)(34)=(13)$
- $r^{2} f \mapsto(13)(24)(12)(34)=(14)(23)$
- $r^{3} f \mapsto$

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$
- $f \mapsto(12)(34)$
- $r f \mapsto(1234)(12)(34)=(13)$
- $r^{2} f \mapsto(13)(24)(12)(34)=(14)(23)$
- $r^{3} f \mapsto(1432)(12)(34)=(24)$

D_{n} to S_{n}

flip

- $r \mapsto(1234)$
- $r^{2} \mapsto(1234)^{2}=(13)(24)$
- $r^{3} \mapsto(1234)^{3}=(1432)$
- $r^{4} \mapsto(1234)^{4}=(1)=e$
- $f \mapsto(12)(34)$
- rf $\mapsto(1234)(12)(34)=(13)$
- $r^{2} f \mapsto(13)(24)(12)(34)=(14)(23)$
- $r^{3} f \mapsto(1432)(12)(34)=(24)$

In general $\phi: D_{4} \rightarrow S_{4}$ is defined by

$$
\phi(r)=(1234) \text { and } \phi(f)=(12)(34)
$$

\mathbb{Z} to $n \mathbb{Z}$

- $z \mapsto n z$ or $1 \mapsto n$

\mathbb{Z} to $n \mathbb{Z}$

- $z \mapsto n z$ or $1 \mapsto n$
- $w \mapsto n w$

\mathbb{Z} to $n \mathbb{Z}$

- $z \mapsto n z$ or $1 \mapsto n$
- $w \mapsto n w$
- $z+w \mapsto n(z+w)=n z+n w$

\mathbb{Z} to $n \mathbb{Z}$

- $z \mapsto n z$ or $1 \mapsto n$
- $-z \mapsto n(-z)=-n z$
- $w \mapsto n w$
- $z+w \mapsto n(z+w)=n z+n w$

\mathbb{Z} to $n \mathbb{Z}$

- $z \mapsto n z$ or $1 \mapsto n$
- $-z \mapsto n(-z)=-n z$
- $w \mapsto n w$
- $0 \mapsto n(0)=0$
- $z+w \mapsto n(z+w)=n z+n w$

\mathbb{Z} to $n \mathbb{Z}$

- $z \mapsto n z$ or $1 \mapsto n$
- $-z \mapsto n(-z)=-n z$
- $w \mapsto n w$
- $0 \mapsto n(0)=0$
- $z+w \mapsto n(z+w)=n z+n w$
- $\operatorname{ker} \phi=\{0\}$

\mathbb{Z} to \mathbb{Z}_{n}

$$
\text { - } z \mapsto z(\bmod n)
$$

\mathbb{Z} to \mathbb{Z}_{n}

- $z \mapsto z(\bmod n)$
- or $1 \mapsto 1(\bmod n)$

\mathbb{Z} to \mathbb{Z}_{n}

\mathbb{Z} to \mathbb{Z}_{n}

\mathbb{Z} to \mathbb{Z}_{n}

\mathbb{Z} to \mathbb{Z}_{n}

- $z \mapsto z(\bmod n)$
- or $1 \mapsto 1(\bmod n)$
- $w \mapsto w(\bmod n)$
- $z+w \mapsto(z+w)(\bmod n)$
- $(z+w)(\bmod n)=z(\bmod n)+w(\bmod n)$
- $-z \mapsto-z(\bmod n)$

\mathbb{Z} to \mathbb{Z}_{n}

\mathbb{Z} to \mathbb{Z}_{n}

- $z \mapsto z(\bmod n)$
- or $1 \mapsto 1(\bmod n)$
- $w \mapsto w(\bmod n)$
- $z+w \mapsto(z+w)(\bmod n)$
- $(z+w)(\bmod n)=z(\bmod n)+w(\bmod n)$
- $-z \mapsto-z(\bmod n)$
- $0 \mapsto 0(\bmod n)$
- $\operatorname{ker} \phi=\{n z \mid z \in \mathbb{Z}\}=n \mathbb{Z}$

A Non-Example: \mathbb{Z}_{3} into \mathbb{Z}_{6}

112 234
5

A Non-Example: \mathbb{Z}_{3} into \mathbb{Z}_{6}

- $e \mapsto 0$
$0 \longrightarrow 0$

1
1

2
2

3

4

5

A Non-Example: \mathbb{Z}_{3} into \mathbb{Z}_{6}

- $e \mapsto 0$
$0 \longrightarrow 0$
- $1 \mapsto 1$
$1 \longrightarrow 1$
2
2
3
4
5

A Non-Example: \mathbb{Z}_{3} into \mathbb{Z}_{6}

- $e \mapsto 0$

$$
\begin{aligned}
& 0 \longrightarrow 0 \\
& 1 \longrightarrow 1 \\
& 2 \longrightarrow 2
\end{aligned}
$$

$$
3
$$

A Non-Example: \mathbb{Z}_{3} into \mathbb{Z}_{6}

- $e \mapsto 0$
- $1 \mapsto 1$
- $2 \mapsto 2$
- $3=1+2 \mapsto 1+2=3$

$1 \longrightarrow 1$
$2 \longrightarrow 2$

3

4

5

A Non-Example: \mathbb{Z}_{3} into \mathbb{Z}_{6}

- $e \mapsto 0$
- $1 \mapsto 1$
- $2 \mapsto 2$
- $3=1+2 \mapsto 1+2=3$
- But $3 \equiv 0(\bmod 3) \mapsto 0$

4

5

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$
e 0
$r \quad 1$
$r^{2} \quad 2$
$f \quad 3$
$r f \quad 4$
$r^{2} f$
5

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$

- $e \mapsto 0$
$r \quad 1$
$r^{2} \quad 2$
$f \quad 3$
$r f$
4
$r^{2} f$
5

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$
- $e \mapsto 0$
- $r^{i} \mapsto 2 i$

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$
- $e \mapsto 0$
- $r^{i} \mapsto 2 i$
- $f \mapsto 3$

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$

$$
\mathrm{e} \longrightarrow 0
$$

- $e \mapsto 0$
- $r^{i} \mapsto 2 i$
- $f \mapsto 3$
- rf $\mapsto 2+3=5$
- $\operatorname{fr}^{2} \mapsto 3+4=7(\bmod 6)=1$

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$

- $e \mapsto 0$
- $r^{i} \mapsto 2 i$
- $f \mapsto 3$
- rf $\mapsto 2+3=5$
- $\operatorname{fr}^{2} \mapsto 3+4=7(\bmod 6)=1$
- But $r f=f r^{2}$

A Non-Example: D_{3} to \mathbb{Z}_{6}

- $\left|D_{3}\right|=\left|\mathbb{Z}_{6}\right|=6$

- $e \mapsto 0$
- $r^{i} \mapsto 2 i$
- $f \mapsto 3$
- rf $\mapsto 2+3=5$
- $\operatorname{fr}^{2} \mapsto 3+4=7(\bmod 6)=1$
- But $r f=f r^{2}$
- D_{n} is non-abelian and \mathbb{Z}_{n} is abelian

Properties of Homomorphisms

Theorem

If $\phi: G \rightarrow H$ is a homomorphism, then:
(1) $\phi\left(e_{G}\right)=e_{H}$
(2) $\phi\left(g^{-1}\right)=\phi(g)^{-1}$
(3) $\phi\left(g^{n}\right)=\phi(g)^{n}$
(4) $|\phi(g)|$ divides $|g|$
(5) $\phi(G)$ is a subgroup of H

Proof of Order Property

Proof.

(1) $|g|=l$ implies $e_{H}=\phi\left(e_{G}\right)=\phi\left(g^{\prime}\right)=\phi(g)^{\prime}$

Proof of Order Property

Proof.

(1) $|g|=I$ implies $e_{H}=\phi\left(e_{G}\right)=\phi\left(g^{\prime}\right)=\phi(g)^{\prime}$
(2) $|\phi(g)|=k \leq 1$

Proof of Order Property

Proof.

(1) $|g|=I$ implies $e_{H}=\phi\left(e_{G}\right)=\phi\left(g^{\prime}\right)=\phi(g)^{\prime}$
(2) $|\phi(g)|=k \leq 1$
(3) By previous theorem k /I

Proof of Order Property

Proof.

(1) $|g|=I$ implies $e_{H}=\phi\left(e_{G}\right)=\phi\left(g^{\prime}\right)=\phi(g)^{\prime}$
(2) $|\phi(g)|=k \leq 1$
(3) By previous theorem $k \mid /$
(4) $\therefore|p h i(g)|$ divides $|g|$

Properties of Homomorphisms

Theorem

If $\phi: G \rightarrow H$ is a homomorphism, then:
(1) $\phi\left(e_{G}\right)=e_{H}$
(2) $\phi\left(g^{-1}\right)=\phi(g)^{-1}$
(3) $\phi\left(g^{n}\right)=\phi(g)^{n}$
(4) $|\phi(g)|$ divides $|g|$
(5) $\phi(G)$ is a subgroup of H

Proof of Subgroup Property

Proof.

(1) $h_{1}, h_{2} \in \phi(G) \subseteq H$

Proof of Subgroup Property

Proof.

(1) $h_{1}, h_{2} \in \phi(G) \subseteq H$
(2) $h_{1}=\phi\left(g_{1}\right)$ and $h_{2}=\phi\left(g_{2}\right)$

Proof of Subgroup Property

Proof.

(1) $h_{1}, h_{2} \in \phi(G) \subseteq H$
(2) $h_{1}=\phi\left(g_{1}\right)$ and $h_{2}=\phi\left(g_{2}\right)$
(3) $h_{1} h_{2}=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right) \in \phi(G)$

Proof of Subgroup Property

Proof.

(1) $h_{1}, h_{2} \in \phi(G) \subseteq H$
(2) $h_{1}=\phi\left(g_{1}\right)$ and $h_{2}=\phi\left(g_{2}\right)$
(3) $h_{1} h_{2}=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right) \in \phi(G)$
(4) $h_{1}^{-1}=\phi\left(g_{1}\right)^{-1}=\phi\left(g_{1}^{-1}\right) \in \phi(G)$

Proof of Subgroup Property

Proof.

(1) $h_{1}, h_{2} \in \phi(G) \subseteq H$
(2) $h_{1}=\phi\left(g_{1}\right)$ and $h_{2}=\phi\left(g_{2}\right)$
(3) $h_{1} h_{2}=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right) \in \phi(G)$
(4) $h_{1}^{-1}=\phi\left(g_{1}\right)^{-1}=\phi\left(g_{1}^{-1}\right) \in \phi(G)$
(5) $\phi(G)$ is closed under the operation and inverses

Proof of Subgroup Property

Proof.

(1) $h_{1}, h_{2} \in \phi(G) \subseteq H$
(2) $h_{1}=\phi\left(g_{1}\right)$ and $h_{2}=\phi\left(g_{2}\right)$
(3) $h_{1} h_{2}=\phi\left(g_{1}\right) \phi\left(g_{2}\right)=\phi\left(g_{1} g_{2}\right) \in \phi(G)$
(4) $h_{1}^{-1}=\phi\left(g_{1}\right)^{-1}=\phi\left(g_{1}^{-1}\right) \in \phi(G)$
(5) $\phi(G)$ is closed under the operation and inverses
(6) $\therefore \phi(G)$ is a subgroup by the two-step subgroup test

Properties of Homomorphisms

Theorem

If $\phi: G \rightarrow H$ is a homomorphism, then:
(1) $\phi\left(e_{G}\right)=e_{H}$
(2) $\phi\left(g^{-1}\right)=\phi(g)^{-1}$
(3) $\phi\left(g^{n}\right)=\phi(g)^{n}$
(4) $|\phi(g)|$ divides $|g|$
(5) $\phi(G)$ is a subgroup of H

A Couple Special Maps

Theorem

Given a group G the map $\phi(g)=g$ is called the identity map and is always a homomorphism.

A Couple Special Maps

Theorem

Given a group G the map $\phi(g)=g$ is called the identity map and is always a homomorphism.

Theorem

Given groups G and H the $\operatorname{map} \phi(g)=e_{H}$ is called the trivial map and is always a homomorphism.

Table of Contents

(1) Homomorphisms

(2) Isomorphisms

(3) Groups and Actions

4 Cayley's Theorem

Isomorphisms

Definition (Surjective)

A homomorphism $\phi: G \rightarrow H$ is surjective if for all $h \in H$ there exists $g \in G$ such that $\phi(g)=h$.

Isomorphisms

Definition (Surjective)

A homomorphism $\phi: G \rightarrow H$ is surjective if for all $h \in H$ there exists $g \in G$ such that $\phi(g)=h$.

Definition (Injective)

A homomorphism $\phi: G \rightarrow H$ is injective if $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$ implies $g_{1}=g_{2}$.

Isomorphisms

Definition (Surjective)

A homomorphism $\phi: G \rightarrow H$ is surjective if for all $h \in H$ there exists $g \in G$ such that $\phi(g)=h$.

Definition (Injective)

A homomorphism $\phi: G \rightarrow H$ is injective if $\phi\left(g_{1}\right)=\phi\left(g_{2}\right)$ implies $g_{1}=g_{2}$.

Definition (Isomorphism)

An isomorphism of groups is a homomorphism which is injective and surjective.
C. F. Rocca Jr. (WCSU)

Sample Isomorphism

Example

Let

$$
G=\left\{\left.\binom{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

which is a group with the operation of vector addition. Then define $\phi: G \rightarrow G$ by

$$
\left(\begin{array}{ll}
3 & 2 \\
4 & 3
\end{array}\right)\binom{a}{b}=\binom{3 a+2 b}{4 a+3 b}
$$

Since the matrix has determinant $1,3 \cdot 3-2 \cdot 4=1$, the matrix is invertible, and in general $M(\vec{v}+\vec{w})=M \vec{v}+M \vec{w}$. Therefore, this is an isomorphism.

Sample Non-Isomorphism

Non-Example

Let

$$
G=\left\{\left.\binom{a}{b} \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

which is a group with the operation of vector addition. Then define $\phi: G \rightarrow G$ by

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{a}{b}=\binom{a}{0}
$$

All vectors of the form $(0, b)^{T}$ map to $(0,0)^{T}$, so this map is not injective. Similarly, it is "clearly" not surjective. Thus ϕ is not an isomorphism. However, it is still a homomorphism. Note that

$$
\operatorname{ker} \phi=\left\{\left.\binom{0}{b} \right\rvert\, b \in \mathbb{Z}\right\}
$$

in linear algebra this is called the Null Space of the linear transformation.

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi: G \rightarrow H, \operatorname{ker} \phi=\{e\}$ if and only if ϕ is injective.

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$
(3) $\phi\left(a b^{-1}\right)=e$ and $a b^{-1} \in \operatorname{ker} \phi$

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$
(3) $\phi\left(a b^{-1}\right)=e$ and $a b^{-1} \in \operatorname{ker} \phi$
(4) $\therefore a b^{-1}=e, a=b$, and ϕ is injective

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$
(3) $\phi\left(a b^{-1}\right)=e$ and $a b^{-1} \in \operatorname{ker} \phi$
4) $\therefore a b^{-1}=e, a=b$, and ϕ is injective

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$
(3) $\phi\left(a b^{-1}\right)=e$ and $a b^{-1} \in \operatorname{ker} \phi$
4) $\therefore a b^{-1}=e, a=b$, and ϕ is injective
(1) Assume ϕ is an injective homomorphism

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$
(3) $\phi\left(a b^{-1}\right)=e$ and $a b^{-1} \in \operatorname{ker} \phi$
4) $\therefore a b^{-1}=e, a=b$, and ϕ is injective
(1) Assume ϕ is an injective homomorphism
(2) $a \in \operatorname{ker} \phi$ implies $\phi(a)=e$ and $\phi(a)=\phi(e)$

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$
(3) $\phi\left(a b^{-1}\right)=e$ and $a b^{-1} \in \operatorname{ker} \phi$
4) $\therefore a b^{-1}=e, a=b$, and ϕ is injective
(1) Assume ϕ is an injective homomorphism
(2) $a \in \operatorname{ker} \phi$ implies $\phi(a)=e$ and $\phi(a)=\phi(e)$
(3) $\phi(a)=\phi(e)$ implies $a=e$

Kernels and Injections

Only If.

(1) Assume ϕ is a homomorphism and $\operatorname{ker} \phi=\{e\}$
(2) $\phi(a)=\phi(b)$ implies $\phi(a) \phi(b)^{-1}=e$
(3) $\phi\left(a b^{-1}\right)=e$ and $a b^{-1} \in \operatorname{ker} \phi$
4) $\therefore a b^{-1}=e, a=b$, and ϕ is injective
(1) Assume ϕ is an injective homomorphism
(2) $a \in \operatorname{ker} \phi$ implies $\phi(a)=e$ and $\phi(a)=\phi(e)$
(3) $\phi(a)=\phi(e)$ implies $a=e$
(4) $\therefore \operatorname{ker} \phi=\{e\}$

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi: G \rightarrow H, \operatorname{ker} \phi=\{e\}$ if and only if ϕ is injective.

Theorem

Given a homomorphism $\phi: G \rightarrow H, \phi: G \rightarrow \phi(G)$ is always surjective.

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi: G \rightarrow H, \operatorname{ker} \phi=\{e\}$ if and only if ϕ is injective.

Theorem

Given a homomorphism $\phi: G \rightarrow H, \phi: G \rightarrow \phi(G)$ is always surjective.

Theorem

Given a homomorphism $\phi: G \rightarrow H, \phi$ is injective if and only if G is isomorphic to $\phi(G)$.

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism $\phi: G \rightarrow H$, ker $\phi=\{e\}$ if and only if ϕ is injective.

Theorem

Given a homomorphism $\phi: G \rightarrow H, \phi: G \rightarrow \phi(G)$ is always surjective.

Theorem

Given a homomorphism $\phi: G \rightarrow H, \phi$ is injective if and only if G is isomorphic to $\phi(G)$.

Corollary

Given a homomorphism $\phi: G \rightarrow H$, ker $\phi=\{e\}$ if and only if G is isomorphic to $\phi(G)$.

\mathbb{Z} to $n \mathbb{Z}$

- $z \mapsto n z$ or $1 \mapsto n$
- $-z \mapsto n(-z)=-n z$
- $w \mapsto n w$
- $0 \mapsto n(0)=0$
- $z+w \mapsto n(z+w)=n z+n w$
- $\operatorname{ker} \phi=\{0\}$

\mathbb{Z} to \mathbb{Z}_{n}

- $z \mapsto z(\bmod n)$
- or $1 \mapsto 1(\bmod n)$
- $w \mapsto w(\bmod n)$
- $z+w \mapsto(z+w)(\bmod n)$
- $(z+w)(\bmod n)=z(\bmod n)+w(\bmod n)$
- $-z \mapsto-z(\bmod n)$
- $0 \mapsto 0(\bmod n)$
- $\operatorname{ker} \phi=\{n z \mid z \in \mathbb{Z}\}=n \mathbb{Z}$

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

> Theorem
> If $G=\langle a\rangle$ is a cyclic group, then
> (1) $G \cong \mathbb{Z}$ when $|G|=\infty$, and
> (2) $G \cong \mathbb{Z}_{n}$ when $|G|=n$.

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, (or by $\left.\phi(a)=1\right)$

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, (or by $\left.\phi(a)=1\right)$
(3) $\phi\left(a^{i} a^{j}\right)=(i+j)(\bmod n)=i(\bmod n)+j(\bmod n)=\phi\left(a^{i}\right)+\phi\left(a^{j}\right)$

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, $($ or by $\phi(a)=1)$
(3) $\phi\left(a^{i} a^{j}\right)=(i+j)(\bmod n)=i(\bmod n)+j(\bmod n)=\phi\left(a^{i}\right)+\phi\left(a^{j}\right)$
(4) $\therefore \phi$ is a homomorphism

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, (or by $\left.\phi(a)=1\right)$
(3) $\phi\left(a^{i} a^{j}\right)=(i+j)(\bmod n)=i(\bmod n)+j(\bmod n)=\phi\left(a^{i}\right)+\phi\left(a^{j}\right)$
(9) $\therefore \phi$ is a homomorphism
(6) $\forall i \in \mathbb{Z}_{n}: \phi\left(a^{i}\right)=i$

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, $($ or by $\phi(a)=1)$
(3) $\phi\left(a^{i} a^{j}\right)=(i+j)(\bmod n)=i(\bmod n)+j(\bmod n)=\phi\left(a^{i}\right)+\phi\left(a^{j}\right)$
(4) $\therefore \phi$ is a homomorphism
(5) $\forall i \in \mathbb{Z}_{n}: \phi\left(a^{i}\right)=i$
(6) $\therefore \phi$ is onto

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, $($ or by $\phi(a)=1)$
(3) $\phi\left(a^{i} a^{j}\right)=(i+j)(\bmod n)=i(\bmod n)+j(\bmod n)=\phi\left(a^{i}\right)+\phi\left(a^{j}\right)$
(4) $\therefore \phi$ is a homomorphism
(5) $\forall i \in \mathbb{Z}_{n}: \phi\left(a^{i}\right)=i$
(6) $\therefore \phi$ is onto
(7) $\phi\left(a^{i}\right)=0$ implies $i \equiv 0(\bmod n)$, i.e. $i=q n$

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, $($ or by $\phi(a)=1)$
(3) $\phi\left(a^{i} a^{j}\right)=(i+j)(\bmod n)=i(\bmod n)+j(\bmod n)=\phi\left(a^{i}\right)+\phi\left(a^{j}\right)$
(4) $\therefore \phi$ is a homomorphism
(5) $\forall i \in \mathbb{Z}_{n}: \phi\left(a^{i}\right)=i$
(6) $\therefore \phi$ is onto
(7) $\phi\left(a^{i}\right)=0$ implies $i \equiv 0(\bmod n)$, i.e. $i=q n$
(8) $a^{i}=a^{q n}=\left(a^{n}\right)^{q}=e^{q}=e$

Cyclic Groups, \mathbb{Z}, and \mathbb{Z}_{n}

Part 2.

(1) $G=\langle a\rangle$ and $|G|=n$
(2) Define $\phi: G \rightarrow \mathbb{Z}_{n}$ by $\phi\left(a^{i}\right)=i(\bmod n)$, $($ or by $\phi(a)=1)$
(3) $\phi\left(a^{i} a^{j}\right)=(i+j)(\bmod n)=i(\bmod n)+j(\bmod n)=\phi\left(a^{i}\right)+\phi\left(a^{j}\right)$
(4) $\therefore \phi$ is a homomorphism
(5) $\forall i \in \mathbb{Z}_{n}: \phi\left(a^{i}\right)=i$
(6) $\therefore \phi$ is onto
(7) $\phi\left(a^{i}\right)=0$ implies $i \equiv 0(\bmod n)$, i.e. $i=q n$
(8) $a^{i}=a^{q n}=\left(a^{n}\right)^{q}=e^{q}=e$
(9) $\therefore \operatorname{ker} \phi=\{e\}$ and ϕ is $1-1$

Conjugation

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto g a g^{-1}$. Note that:

Conjugation

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto g a g^{-1}$. Note that:

- $g(a b) g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)$; conjugation is a homomorphism

Conjugation

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto g a g^{-1}$. Note that:

- $g(a b) g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)$; conjugation is a homomorphism
- $a=g\left(g^{-1} a g\right) g^{-1}$; conjugation is surjective

Conjugation

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto g a g^{-1}$. Note that:

- $g(a b) g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)$; conjugation is a homomorphism
- $a=g\left(g^{-1} a g\right) g^{-1}$; conjugation is surjective
- $\mathrm{gag}^{-1}=e$ implies $a=g^{-1} e g=e$; conjugation is injective

Conjugation

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto g a g^{-1}$. Note that:

- $g(a b) g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)$; conjugation is a homomorphism
- $a=g\left(g^{-1} a g\right) g^{-1}$; conjugation is surjective
- $\mathrm{gag}^{-1}=e$ implies $a=g^{-1} e g=e$; conjugation is injective
- \therefore Conjugation is an isomorphism.

Conjugation

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto g a g^{-1}$. Note that:

- $g(a b) g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)$; conjugation is a homomorphism
- $a=g\left(g^{-1} a g\right) g^{-1}$; conjugation is surjective
- $\mathrm{gag}^{-1}=e$ implies $a=g^{-1} e g=e$; conjugation is injective
- \therefore Conjugation is an isomorphism.

Theorem

Given a group G, subgroup $H \subseteq G$, and $g \in G$,

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}
$$

is also a subgroup of G.

Conjugation

Conjugation Isomorphism

Given a group G and $g \in G$, conjugation by g is the map defined by $a \mapsto g a g^{-1}$. Note that:

- $g(a b) g^{-1}=\left(g a g^{-1}\right)\left(g b g^{-1}\right)$; conjugation is a homomorphism
- $a=g\left(g^{-1} a g\right) g^{-1}$; conjugation is surjective
- gag $^{-1}=e$ implies $a=g^{-1} e g=e$; conjugation is injective
- \therefore Conjugation is an isomorphism.

Theorem

Given a group G, subgroup $H \subseteq G$, and $g \in G$,

$$
g H g^{-1}=\left\{g h g^{-1} \mid h \in H\right\}
$$

is also a subgroup of G.(Proved using the 2-step subgroup test.)

Centralizers and Center

Definition (Centralizer)

Given a group G and element $g \in G$, the centralizer of \mathbf{g} is the set of all elements $a \in G$ which commute with g :

$$
C(g)=\{a \mid g a=a g\}=\left\{a \mid g a g^{-1}=a\right\} .
$$

Definition (Center)

Given a group G, the center of \mathbf{G} is the set of all elements $a \in G$ which commute with all elements in G :

$$
Z(G)=\{a \mid \forall g \in G: g a=a g\}=\left\{a \mid \forall g \in G: g a g^{-1}=a\right\}
$$

Notes on Centralizers and Center

Notes

- The 2-step subgroup test can show that $C(g)$ and $Z(G)$ are subgroups.
- $C(g)$ is fixed when conjugating by $g, g C(g) g^{-1}=C(g)$.
- $\langle g\rangle \subseteq C(g)$ and $Z(G) \subseteq C(g)$ so centralizers are never empty
- $Z(G)$ is fixed when conjugating by any $g \in G, g Z(G) g^{-1}=Z(G)$
- $Z(G)=\bigcap_{g \in G} C(g)$
- $\{e\} \subset Z(G)$ so the center is never empty

Table of Contents

(1) Homomorphisms
(2) Isomorphisms
(3) Groups and Actions

4 Cayley's Theorem

Groups Acting on Themselves

> Theorem
> Let G be a group, then for all $g \in G$ the map $T_{g}: G \rightarrow G$ defined by $T_{g}(h)=g h$ is a bijection.

Groups Acting on Themselves

Theorem

Let G be a group, then for all $g \in G$ the map $T_{g}: G \rightarrow G$ defined by $T_{g}(h)=g h$ is a bijection.

Injective.

Given $h, k \in G$:

$$
\begin{aligned}
T_{g}(h)=T_{g}(k) & \Rightarrow g h=g k \\
& \Rightarrow g^{-1} g h=g^{-1} g k \\
& \Rightarrow h=k
\end{aligned}
$$

therefore, T_{g} is injective.

Groups Acting on Themselves

Theorem

Let G be a group, then for all $g \in G$ the map $T_{g}: G \rightarrow G$ defined by $T_{g}(h)=g h$ is a bijection.

Surjective.

Given $h \in G$:

$$
\begin{aligned}
h & =g g^{-1} h \\
& =T_{g}\left(g^{-1} h\right)
\end{aligned}
$$

therefore, T_{g} is surjective.

Groups Acting on Themselves

Theorem

Let G be a group, then for all $g \in G$ the map $T_{g}: G \rightarrow G$ defined by $T_{g}(h)=g h$ is a bijection.

Not a Homomorphism

Note $T_{g}(e)=g e=g$, so T_{g} is not a homomorphism. However, since it is a bijective map from G to its self, it is a permutation of the elements of G.

Example

\mathbb{Z}_{n} acting on its self

For a set S and element a recall that $a S=\{a s \mid s \in S\}$. This may be written $a+S$ if addition is the appropriate operation. For example, if we add 2 to the set of equivalence classes in \mathbb{Z}_{6} we get

$$
\begin{aligned}
2+\mathbb{Z}_{6} & =2+\{0,1,2,3,4,5\} \\
& =\{2+0,2+1,2+2,2+3,2+4,2+5\} \\
& =\{2,3,4,5,0,1\}
\end{aligned}
$$

Example

\mathbb{Z}_{n} acting on its self

For a set S and element a recall that $a S=\{a s \mid s \in S\}$. This may be written $a+S$ if addition is the appropriate operation. For example, if we add 2 to the set of equivalence classes in \mathbb{Z}_{6} we get

$$
\begin{aligned}
2+\mathbb{Z}_{6} & =2+\{0,1,2,3,4,5\} \\
& =\{2+0,2+1,2+2,2+3,2+4,2+5\} \\
& =\{2,3,4,5,0,1\}
\end{aligned}
$$

Table of Contents

(1) Homomorphisms

(2) Isomorphisms
(3) Groups and Actions

4 Cayley's Theorem

Cayley's Theorem: Statement

```
Theorem (Cayley's Theorem)
Every group is isomorphic to a group of permutations.
```


Example

\mathbb{Z}_{n} acting on its self

For a set S and element a recall that $a S=\{a s \mid s \in S\}$. This may be written $a+S$ if addition is the appropriate operation. For example, if we add 2 to the set of equivalence classes in \mathbb{Z}_{6} we get

$$
\begin{aligned}
2+\mathbb{Z}_{6} & =2+\{0,1,2,3,4,5\} \\
& =\{2+0,2+1,2+2,2+3,2+4,2+5\} \\
& =\{2,3,4,5,0,1\}
\end{aligned}
$$

$$
2 \longrightarrow T_{2}(g)=2+g \longrightarrow(024)(135) \in S_{6}
$$

Cayley's Theorem: Proof

Lemma

For each $g \in G$ define $T_{g}(x)=g x$ for all $x \in G$, the set

$$
T_{G}=\left\{T_{g} \mid g \in G\right\}
$$

is a group with the operation of composition.

Proof.

(1) Closure: $T_{g} \circ T_{h}(x)=T_{g}\left(T_{h}(x)\right)=T_{g}(h x)=g h x=T_{g h}(x)$

Cayley's Theorem: Proof

Lemma

For each $g \in G$ define $T_{g}(x)=g x$ for all $x \in G$, the set

$$
T_{G}=\left\{T_{g} \mid g \in G\right\}
$$

is a group with the operation of composition.

Proof.

(1) Closure: $T_{g} \circ T_{h}(x)=T_{g}\left(T_{h}(x)\right)=T_{g}(h x)=g h x=T_{g h}(x)$
(2) Associative: $T_{g} \circ\left(T_{h} \circ T_{k}\right)=T_{g(h k)}=T_{(g h) k}=\left(T_{g} \circ T_{h}\right) \circ T_{k}$

Cayley's Theorem: Proof

Lemma

For each $g \in G$ define $T_{g}(x)=g x$ for all $x \in G$, the set

$$
T_{G}=\left\{T_{g} \mid g \in G\right\}
$$

is a group with the operation of composition.

Proof.

(1) Closure: $T_{g} \circ T_{h}(x)=T_{g}\left(T_{h}(x)\right)=T_{g}(h x)=g h x=T_{g h}(x)$
(2) Associative: $T_{g} \circ\left(T_{h} \circ T_{k}\right)=T_{g(h k)}=T_{(g h) k}=\left(T_{g} \circ T_{h}\right) \circ T_{k}$
(3) Identity: $T_{g} \circ T_{e}(x)=T_{g}\left(T_{e}(x)\right)=T_{g}(x)$

Cayley's Theorem: Proof

Lemma

For each $g \in G$ define $T_{g}(x)=g x$ for all $x \in G$, the set

$$
T_{G}=\left\{T_{g} \mid g \in G\right\}
$$

is a group with the operation of composition.

Proof.

(1) Closure: $T_{g} \circ T_{h}(x)=T_{g}\left(T_{h}(x)\right)=T_{g}(h x)=g h x=T_{g h}(x)$
(2) Associative: $T_{g} \circ\left(T_{h} \circ T_{k}\right)=T_{g(h k)}=T_{(g h) k}=\left(T_{g} \circ T_{h}\right) \circ T_{k}$
(3) Identity: $T_{g} \circ T_{e}(x)=T_{g}\left(T_{e}(x)\right)=T_{g}(x)$
(4) Inverse: $T_{g} \circ T_{g^{-1}}(x)=g g^{-1} x=x=T_{e}(x)$

Cayley's Theorem: Proof

Cayley's Theorem.

(1) A permutation of a set is any bijection from the set to its self

Cayley's Theorem: Proof

Cayley's Theorem.

(1) A permutation of a set is any bijection from the set to its self
(2) Let $A(G)$ be the set of all possible permutations of the elements of G

Cayley's Theorem: Proof

Cayley's Theorem.

(1) A permutation of a set is any bijection from the set to its self
(2) Let $A(G)$ be the set of all possible permutations of the elements of G
(3) Define $\phi: G \rightarrow A(G)$ by $g \mapsto T_{g}$

Cayley's Theorem: Proof

Cayley's Theorem.

(1) A permutation of a set is any bijection from the set to its self
(2) Let $A(G)$ be the set of all possible permutations of the elements of G
(3) Define $\phi: G \rightarrow A(G)$ by $g \mapsto T_{g}$
(4) By the lemma, $T_{G}=\left\{T_{g} \mid g \in G\right\}$ is a subgroup of $A(G)$

Cayley's Theorem: Proof

Cayley's Theorem.

(1) A permutation of a set is any bijection from the set to its self
(2) Let $A(G)$ be the set of all possible permutations of the elements of G
(3) Define $\phi: G \rightarrow A(G)$ by $g \mapsto T_{g}$
(4) By the lemma, $T_{G}=\left\{T_{g} \mid g \in G\right\}$ is a subgroup of $A(G)$
(5) $\phi(g h)=T_{g h}=T_{g} \circ T_{h}=\phi(g) \circ \phi(h)$ so ϕ is a homomorphism

Cayley's Theorem: Proof

Cayley's Theorem.

(1) A permutation of a set is any bijection from the set to its self
(2) Let $A(G)$ be the set of all possible permutations of the elements of G
(3) Define $\phi: G \rightarrow A(G)$ by $g \mapsto T_{g}$
(4) By the lemma, $T_{G}=\left\{T_{g} \mid g \in G\right\}$ is a subgroup of $A(G)$
(5) $\phi(g h)=T_{g h}=T_{g} \circ T_{h}=\phi(g) \circ \phi(h)$ so ϕ is a homomorphism
(6) $\phi(g)=T_{g}=T_{e}$ implies $g=e$ so that $\operatorname{ker} \phi=\{e\}$ and ϕ is 1-1

Cayley's Theorem: Proof

Cayley's Theorem.

(1) A permutation of a set is any bijection from the set to its self
(2) Let $A(G)$ be the set of all possible permutations of the elements of G
(3) Define $\phi: G \rightarrow A(G)$ by $g \mapsto T_{g}$
(4) By the lemma, $T_{G}=\left\{T_{g} \mid g \in G\right\}$ is a subgroup of $A(G)$
(5) $\phi(g h)=T_{g h}=T_{g} \circ T_{h}=\phi(g) \circ \phi(h)$ so ϕ is a homomorphism
(6) $\phi(g)=T_{g}=T_{e}$ implies $g=e$ so that $\operatorname{ker} \phi=\{e\}$ and ϕ is 1-1
(7) $\therefore G$ is isomorphic to $\phi(G)=T_{G} \subseteq A(G)$

Cayley's Theorem: Statement

Theorem (Cayley's Theorem)

Every group is isomorphic to a group of permutations.

Corollary

Every group of order n is isomorphic to a subgroup of the symmetric group S_{n}.

Cayley's Theorem: Proof

Corollary.

(1) Let $A(G)$ be the set of all possible permutations of the elements of G

Cayley's Theorem: Proof

Corollary.

(1) Let $A(G)$ be the set of all possible permutations of the elements of G
(2) $|G|=n$ means $A(G)$ is a set of permutations of n elements

Cayley's Theorem: Proof

Corollary.

(1) Let $A(G)$ be the set of all possible permutations of the elements of G
(2) $|G|=n$ means $A(G)$ is a set of permutations of n elements
(3) By "definition" $A(G)$ is isomorphic to S_{n}

Cayley's Theorem: Statement

Theorem (Cayley's Theorem)

Every group is isomorphic to a group of permutations.

Corollary

Every group of order n is isomorphic to a subgroup of the symmetric group S_{n}.

Groups and Homomorphisms

Dr. Chuck Rocca

WESTERN

 CONNECTICUT STATE UNIVERSITYMACRICOSTAS
SCHOOL OF ARTS 8 SCIENCES
C. F. Rocca Jr. (WCSU)

Groups and Homomorphisms

