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Homomorphisms

Homomorphisms of Groups

Definition

A function ϕ from a group G to a group H is a group homomorphism provided

ϕ(g1 ∗G g2) = ϕ(g1) ∗H ϕ(g2)

Definition

If ϕ : G → H is a homomorphism, then the kernel of ϕ is the set

kerϕ = {g ∈ G |ϕ(g) = eH}.
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Homomorphisms

Dn to Sn

2

34

1

flip

rotate

7→

23
4 1

2

3 4

1

2 3
41

2

34

12

3 4

1
23

4 12

34

1
2 3

41

r 7→ (1234)

r 2 7→

(1234)2 = (13)(24)

r 3 7→

(1234)3 = (1432)

r 4 7→

(1234)4 = (1) = e

f 7→ (12)(34)

rf 7→

(1234)(12)(34) = (13)

r 2f 7→

(13)(24)(12)(34) = (14)(23)

r 3f 7→

(1432)(12)(34) = (24)

In general ϕ : D4 → S4 is defined by

ϕ(r) = (1234) and ϕ(f ) = (12)(34)
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Homomorphisms

Z to nZ

z 7→ nz or 1 7→ n

-7

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-1

-1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

z 7→ nz or 1 7→ n

w 7→ nw

z + w 7→ n(z + w) = nz + nw

−z 7→ n(−z) = −nz

0 7→ n(0) = 0

kerϕ = {0}
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Homomorphisms

Z to Zn

...

-4

5

-3

6-2 7
-1 8

0 0

1 1
2 2

3

3

4

4

...
z 7→ z (mod n)

or 1 7→ 1 (mod n)

w 7→ w (mod n)

z + w 7→ (z + w) (mod n)

(z + w) (mod n) = z (mod n) + w (mod n)

−z 7→ −z (mod n)

0 7→ 0 (mod n)

ker ϕ = {nz |z ∈ Z} = nZ
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Homomorphisms

A Non-Example: Z3 into Z6

e 7→ 0

1 7→ 1

2 7→ 2

3 = 1 + 2 7→ 1 + 2 = 3

But 3 ≡ 0 (mod 3) 7→ 0

0

1

2

0

1

2

3

4

5
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Homomorphisms

Properties of Homomorphisms

Theorem

If ϕ : G → H is a homomorphism, then:

1 ϕ(eG ) = eH

2 ϕ(g−1) = ϕ(g)−1

3 ϕ(gn) = ϕ(g)n

4 |ϕ(g)| divides |g |
5 ϕ(G) is a subgroup of H
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Homomorphisms

Proof of Order Property

Proof.

1 |g | = l implies eH = ϕ(eG ) = ϕ(g l) = ϕ(g)l

2 |ϕ(g)| = k ≤ l

3 By previous theorem k|l
4 ∴ |phi(g)| divides |g |
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Homomorphisms

Proof of Subgroup Property

Proof.

1 h1, h2 ∈ ϕ(G) ⊆ H

2 h1 = ϕ(g1) and h2 = ϕ(g2)

3 h1h2 = ϕ(g1)ϕ(g2) = ϕ(g1g2) ∈ ϕ(G)

4 h−1
1 = ϕ(g1)

−1 = ϕ(g−1
1 ) ∈ ϕ(G)

5 ϕ(G) is closed under the operation and inverses

6 ∴ ϕ(G) is a subgroup by the two-step subgroup test
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Homomorphisms

A Couple Special Maps

Theorem

Given a group G the map ϕ(g) = g is called the identity map and is always a
homomorphism.

Theorem

Given groups G and H the map ϕ(g) = eH is called the trivial map and is always a
homomorphism.
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Isomorphisms

Table of Contents

1 Homomorphisms

2 Isomorphisms

3 Groups and Actions

4 Cayley’s Theorem
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Isomorphisms

Isomorphisms

Definition (Surjective)

A homomorphism ϕ : G → H is surjective if for all h ∈ H there exists g ∈ G such that
ϕ(g) = h.

Definition (Injective)

A homomorphism ϕ : G → H is injective if ϕ(g1) = ϕ(g2) implies g1 = g2.

Definition (Isomorphism)

An isomorphism of groups is a homomorphism which is injective and surjective.
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Isomorphisms

Sample Isomorphism

Example

Let

G =

{(
a
b

)∣∣∣∣a, b ∈ Z
}

which is a group with the operation of vector addition. Then define ϕ : G → G by(
3 2
4 3

)(
a
b

)
=

(
3a+ 2b
4a+ 3b

)
.

Since the matrix has determinant 1, 3 · 3− 2 · 4 = 1, the matrix is invertible, and in
general M(v⃗ + w⃗) = Mv⃗ +Mw⃗ . Therefore, this is an isomorphism.
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Isomorphisms

Sample Non-Isomorphism

Non-Example

Let

G =

{(
a
b

)∣∣∣∣a, b ∈ Z
}

which is a group with the operation of vector addition. Then define ϕ : G → G by(
1 0
0 0

)(
a
b

)
=

(
a
0

)
.

All vectors of the form (0, b)T map to (0, 0)T , so this map is not injective. Similarly, it
is “clearly” not surjective. Thus ϕ is not an isomorphism. However, it is still a
homomorphism. Note that

kerϕ =

{(
0
b

)∣∣∣∣b ∈ Z
}
,

in linear algebra this is called the Null Space of the linear transformation.
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Isomorphisms

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism ϕ : G → H, kerϕ = {e} if and only if ϕ is injective.

Theorem

Given a homomorphism ϕ : G → H, ϕ : G → ϕ(G) is always surjective.

Theorem

Given a homomorphism ϕ : G → H, ϕ is injective if and only if G is isomorphic to ϕ(G).

Corollary

Given a homomorphism ϕ : G → H, kerϕ = {e} if and only if G is isomorphic to ϕ(G).
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Isomorphisms

Kernels and Injections

Only If.

1 Assume ϕ is a homomorphism and ker ϕ = {e}

2 ϕ(a) = ϕ(b) implies ϕ(a)ϕ(b)−1 = e

3 ϕ(ab−1) = e and ab−1 ∈ kerϕ

4 ∴ ab−1 = e, a = b, and ϕ is injective

If.

1 Assume ϕ is an injective homomorphism

2 a ∈ kerϕ implies ϕ(a) = e and ϕ(a) = ϕ(e)

3 ϕ(a) = ϕ(e) implies a = e

4 ∴ kerϕ = {e}
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Isomorphisms

Kernels, Injective Maps, and Isomorphisms

Theorem

Given a homomorphism ϕ : G → H, kerϕ = {e} if and only if ϕ is injective.

Theorem

Given a homomorphism ϕ : G → H, ϕ : G → ϕ(G) is always surjective.

Theorem

Given a homomorphism ϕ : G → H, ϕ is injective if and only if G is isomorphic to ϕ(G).

Corollary

Given a homomorphism ϕ : G → H, kerϕ = {e} if and only if G is isomorphic to ϕ(G).
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Isomorphisms

Z to nZ

z 7→ nz or 1 7→ n

-7

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-1

-1

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

z 7→ nz or 1 7→ n

w 7→ nw

z + w 7→ n(z + w) = nz + nw

−z 7→ n(−z) = −nz

0 7→ n(0) = 0

kerϕ = {0}
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Isomorphisms

Z to Zn

...

-4

5

-3

6-2 7
-1 8

0 0

1 1
2 2

3

3

4

4

...
z 7→ z (mod n)

or 1 7→ 1 (mod n)

w 7→ w (mod n)

z + w 7→ (z + w) (mod n)

(z + w) (mod n) = z (mod n) + w (mod n)

−z 7→ −z (mod n)

0 7→ 0 (mod n)

ker ϕ = {nz |z ∈ Z} = nZ
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Isomorphisms

Cyclic Groups, Z, and Zn

Theorem

If G = ⟨a⟩ is a cyclic group, then

1 G ∼= Z when |G | = ∞, and

2 G ∼= Zn when |G | = n.
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Isomorphisms

Cyclic Groups, Z, and Zn

Part 2.

1 G = ⟨a⟩ and |G | = n

2 Define ϕ : G → Zn by ϕ(ai ) = i (mod n), (or by ϕ(a) = 1)

3 ϕ(aiaj) = (i + j) (mod n) = i (mod n) + j (mod n) = ϕ(ai ) + ϕ(aj)

4 ∴ ϕ is a homomorphism

5 ∀i ∈ Zn : ϕ(ai ) = i

6 ∴ ϕ is onto

7 ϕ(ai ) = 0 implies i ≡ 0 (mod n), i.e. i = qn

8 ai = aqn = (an)q = eq = e

9 ∴ kerϕ = {e} and ϕ is 1-1
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Isomorphisms

Conjugation

Conjugation Isomorphism

Given a group G and g ∈ G , conjugation by g is the map defined by a 7→ gag−1. Note
that:

g(ab)g−1 = (gag−1)(gbg−1); conjugation is a homomorphism

a = g(g−1ag)g−1; conjugation is surjective

gag−1 = e implies a = g−1eg = e; conjugation is injective

∴ Conjugation is an isomorphism.

Theorem

Given a group G, subgroup H ⊆ G, and g ∈ G,

gHg−1 =
{
ghg−1

∣∣∣h ∈ H
}

is also a subgroup of G.
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Isomorphisms

Conjugation

Conjugation Isomorphism

Given a group G and g ∈ G , conjugation by g is the map defined by a 7→ gag−1. Note
that:

g(ab)g−1 = (gag−1)(gbg−1); conjugation is a homomorphism

a = g(g−1ag)g−1; conjugation is surjective

gag−1 = e implies a = g−1eg = e; conjugation is injective

∴ Conjugation is an isomorphism.

Theorem

Given a group G, subgroup H ⊆ G, and g ∈ G,

gHg−1 =
{
ghg−1

∣∣∣h ∈ H
}

is also a subgroup of G.(Proved using the 2-step subgroup test.)
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Isomorphisms

Centralizers and Center

Definition (Centralizer)

Given a group G and element g ∈ G , the centralizer of g is the set of all elements
a ∈ G which commute with g :

C(g) = {a|ga = ag} =
{
a
∣∣∣gag−1 = a

}
.

Definition (Center)

Given a group G , the center of G is the set of all elements a ∈ G which commute with
all elements in G :

Z(G) = {a|∀g ∈ G : ga = ag} =
{
a
∣∣∣∀g ∈ G : gag−1 = a

}
.
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Isomorphisms

Notes on Centralizers and Center

Notes

The 2-step subgroup test can show that C(g) and Z(G) are subgroups.

C(g) is fixed when conjugating by g , gC(g)g−1 = C(g).

⟨g⟩ ⊆ C(g) and Z(G) ⊆ C(g) so centralizers are never empty

Z(G) is fixed when conjugating by any g ∈ G , gZ(G)g−1 = Z(G)

Z(G) =
⋂
g∈G

C(g)

{e} ⊂ Z(G) so the center is never empty
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Groups and Actions

Table of Contents

1 Homomorphisms

2 Isomorphisms

3 Groups and Actions

4 Cayley’s Theorem
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Groups and Actions

Groups Acting on Themselves

Theorem

Let G be a group, then for all g ∈ G the map Tg : G → G defined by Tg (h) = gh is a
bijection.
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Groups and Actions

Groups Acting on Themselves

Theorem

Let G be a group, then for all g ∈ G the map Tg : G → G defined by Tg (h) = gh is a
bijection.

Injective.

Given h, k ∈ G :

Tg (h) = Tg (k) ⇒ gh = gk

⇒ g−1gh = g−1gk

⇒ h = k,

therefore, Tg is injective.
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Groups and Actions

Groups Acting on Themselves

Theorem

Let G be a group, then for all g ∈ G the map Tg : G → G defined by Tg (h) = gh is a
bijection.

Surjective.

Given h ∈ G :

h = gg−1h

= Tg (g
−1h)

therefore, Tg is surjective.
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Groups and Actions

Groups Acting on Themselves

Theorem

Let G be a group, then for all g ∈ G the map Tg : G → G defined by Tg (h) = gh is a
bijection.

Not a Homomorphism

Note Tg (e) = ge = g , so Tg is not a homomorphism. However, since it is a bijective
map from G to its self, it is a permutation of the elements of G .
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Groups and Actions

Example

Zn acting on its self

For a set S and element a recall that aS = {as|s ∈ S}. This may be written a+ S if
addition is the appropriate operation. For example, if we add 2 to the set of equivalence
classes in Z6 we get

2 + Z6 = 2 + {0, 1, 2, 3, 4, 5}
= {2 + 0, 2 + 1, 2 + 2, 2 + 3, 2 + 4, 2 + 5}
= {2, 3, 4, 5, 0, 1}
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0 0

1 1

2 2

3 3

4 4

5 5
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Cayley’s Theorem
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Cayley’s Theorem

Cayley’s Theorem: Statement

Theorem (Cayley’s Theorem)

Every group is isomorphic to a group of permutations.

Corollary

Every group of order n is isomorphic to a subgroup of the symmetric group Sn.
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Cayley’s Theorem

Example

Zn acting on its self

For a set S and element a recall that aS = {as|s ∈ S}. This may be written a+ S if
addition is the appropriate operation. For example, if we add 2 to the set of equivalence
classes in Z6 we get

2 + Z6 = 2 + {0, 1, 2, 3, 4, 5}
= {2 + 0, 2 + 1, 2 + 2, 2 + 3, 2 + 4, 2 + 5}
= {2, 3, 4, 5, 0, 1}

0 0

1 1

2 2

3 3

4 4

5 5

2 −→ T2(g) = 2 + g −→ (024)(135) ∈ S6
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Cayley’s Theorem

Cayley’s Theorem: Proof

Lemma

For each g ∈ G define Tg (x) = gx for all x ∈ G, the set

TG = {Tg |g ∈ G}

is a group with the operation of composition.

Proof.

1 Closure: Tg ◦ Th(x) = Tg (Th(x)) = Tg (hx) = ghx = Tgh(x)

2 Associative: Tg ◦ (Th ◦ Tk) = Tg(hk) = T(gh)k = (Tg ◦ Th) ◦ Tk

3 Identity: Tg ◦ Te(x) = Tg (Te(x)) = Tg (x)

4 Inverse: Tg ◦ Tg−1(x) = gg−1x = x = Te(x)
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Cayley’s Theorem

Cayley’s Theorem: Proof

Cayley’s Theorem.

1 A permutation of a set is any bijection from the set to its self

2 Let A(G) be the set of all possible permutations of the elements of G

3 Define ϕ : G → A(G) by g 7→ Tg

4 By the lemma, TG = {Tg |g ∈ G} is a subgroup of A(G)

5 ϕ(gh) = Tgh = Tg ◦ Th = ϕ(g) ◦ ϕ(h) so ϕ is a homomorphism

6 ϕ(g) = Tg = Te implies g = e so that kerϕ = {e} and ϕ is 1-1

7 ∴ G is isomorphic to ϕ(G) = TG ⊆ A(G)
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Cayley’s Theorem: Statement

Theorem (Cayley’s Theorem)

Every group is isomorphic to a group of permutations.
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Every group of order n is isomorphic to a subgroup of the symmetric group Sn.

C. F. Rocca Jr. (WCSU) Groups and Homomorphisms 37 / 40



Cayley’s Theorem

Cayley’s Theorem: Proof

Corollary.

1 Let A(G) be the set of all possible permutations of the elements of G

2 |G | = n means A(G) is a set of permutations of n elements

3 By “definition” A(G) is isomorphic to Sn
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Cayley’s Theorem

Groups and Homomorphisms

Dr. Chuck Rocca
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