Groups and Subgroups

Dr. Chuck Rocca

æ

C. F. Rocca Jr. (WCSU)

L / 41

Table of Contents

æ

E ► < E ►

.

Image: A matrix

C. F. Rocca Jr. (WCSU)

æ

 R^2

C. F. Rocca Jr. (WCSU)

f

æ

æ

æ

▶ < ≣ ▶

.

Image: A matrix

æ

▶ < Ξ ▶</p>

.

Image: A matrix

C. F. Rocca Jr. (WCSU)

4 / 41

æ

Image: A matrix and a matrix

E ► < E ►

900

• e = (1)

æ

▶ < ≣ ▶

C. F. Rocca Jr. (WCSU)

< □ ►

< 4 ▶

- e = (1)
- *R* = (123)

æ

▶ < E ▶

< □ ▶

•
$$e = (1)$$

- *R* = (123)
- $R^2 = (132) = (123)(123)$

æ

- 3 ▶

•
$$e = (1)$$

- *R* = (123)
- $R^2 = (132) = (123)(123)$
- f = (23)

æ

• e = (1)

• Rf = (12) = (123)(23)

- *R* = (123)
- $R^2 = (132) = (123)(123)$
- *f* = (23)

200

æ

- e = (1)
- *R* = (123)
- $R^2 = (132) = (123)(123)$
- *f* = (23)

- Rf = (12) = (123)(23)
- $R^2 f = (13) = (132)(23)$

æ

- e = (1)
- *R* = (123)
- $R^2 = (132) = (123)(123)$
- *f* = (23)

- Rf = (12) = (123)(23)
- $R^2 f = (13) = (132)(23)$

•
$$fR = (23)(123) = (13)$$

æ

- e = (1)
- R = (123)
- $R^2 = (132) = (123)(123)$
- *f* = (23)

- Rf = (12) = (123)(23)
- $R^2 f = (13) = (132)(23)$
- fR = (23)(123) = (13)
- $fR^2 = (23)(132) = (12)$

э

.

- e = (1)
- R = (123)
- $R^2 = (132) = (123)(123)$
- *f* = (23)

- Rf = (12) = (123)(23)
- $R^2 f = (13) = (132)(23)$
- fR = (23)(123) = (13)
- $fR^2 = (23)(132) = (12)$

$$fr^k = r^{3-k}f$$

э

.

C. F. Rocca Jr. (WCSU)

æ

E ► < E ►

Image: A start and a start a start

Image: A matrix

(Shift, Flip) = (1, 0) = (1, 2n)

æ

(日)

(Shift, Flip) = (0, 1) = (0, 2n + 1)

(Shift, Flip) = (3, 1) = (3, 2n + 1)

(Shift, Flip) = (-4, 0) = (-4, 2n)

æ

Direct Product: $\mathbb{Z} \oplus \mathbb{Z}_2$

 $\mathbb{Z} \oplus \mathbb{Z}_2 = \{(a, b) | a \in \mathbb{Z}, b \in \mathbb{Z}_2\}$

and

$$orall (a,b), (c,d) \in \mathbb{Z} \oplus \mathbb{Z}_2: (a,b) + (c,d) = (a+c,b+d)$$

æ

▶ < Ξ ▶</p>

Image: A matrix and a matrix

Table of Contents

æ

E ► < E ►

.

Image: A matrix

C. F. Rocca Jr. (WCSU)

Group Definition

Definition (Group)

A group is a set G together with a binary operation * such that

- 2 Associative: $\forall a, b, c \in G : a * (b * c) = (a * b) * c$
- **3** Identity: $\exists e \in G \ \forall a \in G : e * a = a * e = a$
- **4** Inverses: $\forall a \in G \exists a^{-1} \in G : a * a^{-1} = a^{-1} * a = e$

э

Dihedral Group: (D_n, \circ)

Definition

The **Dihedral Group**, D_n is the set of all transformations of an *n*-gon which leave it fixed as a set, i.e. it appears the same, they are combined using composition. It can be **generated** by a single reflection, *f*, perpendicular to a side and a rotation of $r = 360^{\circ}/n$. The **order of** D_n is $|D_n| = 2n$ and it is **non-Abelian**.

Dihedral Group: (D_n, \circ)

Definition

The **Dihedral Group**, D_n is the set of all transformations of an *n*-gon which leave it fixed as a set, i.e. it appears the same, they are combined using composition. It can be **generated** by a single reflection, *f*, perpendicular to a side and a rotation of $r = 360^{\circ}/n$. The **order of** D_n is $|D_n| = 2n$ and it is **non-Abelian**.

Dihedral Group: (D_n, \circ)

Definition

The **Dihedral Group**, D_n is the set of all transformations of an *n*-gon which leave it fixed as a set, i.e. it appears the same, they are combined using composition. It can be **generated** by a single reflection, *f*, perpendicular to a side and a rotation of $r = 360^{\circ}/n$. The **order of** D_n is $|D_n| = 2n$ and it is **non-Abelian**.

Orders

Definition

If G is a group, the **order of** G is the number of elements in G and is written |G|.

C. F. Rocca Jr. (WCSU)

Groups and Subgroups

11 / 43

æ

E ► < E ►

Image: A matrix and a matrix

Orders

Definition

If G is a group, the **order of** G is the number of elements in G and is written |G|.

Definition

If G is a group and $g \in G$, then **the order of** g is the **least** positive integer k such that $g^k = e \in G$ and is written |g| = k. If no such value exists we say $|g| = \infty$.

æ

▲□▶ ▲圖▶ ▲屋▶ ▲屋▶

Theorem

Given $g \in G$, a group, assume |g| = k:

• if
$$g^{I} = e$$
, then $k|I$,

2 if
$$g^i = g^j$$
, then $i \equiv j \pmod{k}$, and

3 if
$$k = qd$$
, then $|g^d| = q$.

2000

C. F. Rocca Jr. (WCSU)

æ

Part 1.

C. F. Rocca Jr. (WCSU)

æ

Part 1.

1 Assume |g| = k and g' = e

C. F. Rocca Jr. (WCSU)

3

Part 1.

- **1** Assume |g| = k and g' = e
- $I = qk + r \text{ with } 0 \leq r < k$

æ

Part 1.

- **1** Assume |g| = k and g' = e
- 2 l = qk + r with $0 \le r < k$

•
$$e = g^{l} = g^{qk+r} = (g^{k})^{q}g^{r} = eg^{r} = g^{r}$$

æ

Part 1.

- Assume |g| = k and g' = e
- 2 l = qk + r with $0 \le r < k$
- **3** $e = g^{l} = g^{qk+r} = (g^{k})^{q}g^{r} = eg^{r} = g^{r}$
- r = 0 or we contradict the assumption that k is least

æ

Part 1.

- Assume |g| = k and g' = e
- 2 l = qk + r with $0 \le r < k$
- **3** $e = g^{l} = g^{qk+r} = (g^{k})^{q}g^{r} = eg^{r} = g^{r}$
- r = 0 or we contradict the assumption that k is least
- $\bigcirc \therefore k|I$

æ

Theorem

Given $g \in G$, a group, assume |g| = k:

• if
$$g^{I} = e$$
, then $k|I$,

2 if
$$g^i = g^j$$
, then $i \equiv j \pmod{k}$, and

3 if
$$k = qd$$
, then $|g^d| = q$.

20C

C. F. Rocca Jr. (WCSU)

æ

Integers: $(\mathbb{Z}, +)$

Integers: $(\mathbb{Z}, +)$

The integers, $\mathbb{Z} = \{0, \pm 1, \pm 2, \ldots\}$ form a group with addition. Since for all $a, b \in \mathbb{Z}$ a + b = b + a, we say that \mathbb{Z} is an **Abelian** group. The order of \mathbb{Z} is infinite, $|\mathbb{Z}| = \infty$. Finally, since we get all the elements of \mathbb{Z} by adding and subtracting 1, we say \mathbb{Z} is a cyclic group.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Integers Modulo *n*: $(\mathbb{Z}_n, +)$

Integers: $(\mathbb{Z}_n, +)$

The **integers modulo** n, $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ form a group with addition. Since for all $a, b \in \mathbb{Z}_n \ a+b=b+a$, we say that \mathbb{Z}_n is an **Abelian** group. The order of \mathbb{Z}_n is n, $|\mathbb{Z}| = n$. Finally, since we get all the elements of \mathbb{Z}_n by adding 1, we say \mathbb{Z}_n is a **cyclic group**.

Direct Product: $(\mathbb{Z} \oplus \mathbb{Z}_n, +)$

Integers: $(\mathbb{Z} \oplus \mathbb{Z}_n, +)$

The set $\mathbb{Z} \oplus \mathbb{Z}_n = \{(a, b) | a \in \mathbb{Z}, b \in \mathbb{Z}_n\}$ is a group using addition where (a, b) + (c, d) = (a + c, b + d). Since each component is Abelian, this group is Abelian, its order is infinite, but it has a finite **subgroup**. (This is called the **torsion subgroup**.)

Direct Product: $(G_1 \oplus G_2, *)$

Definition

Given two groups G_1 and G_2 a **direct product** of the groups is the set

$$\mathit{G}_1 \oplus \mathit{G}_2 = \{(a,b) | a \in \mathit{G}_1, b \in \mathit{G}_2\}$$

with the operation

$$(a, b) * (c, d) = (a *_{G_1} c, b *_{G_2} d).$$

The order of $|G_1 \oplus G_2| = |G_1||G_2|$ if they are finite, otherwise it is infinite.

Image: Image:

æ

3 1 4 3 1

Definition

The symmetric group S_n is the set of all permutations of *n* objects. Permutations are combined using composition and since there are *n*! ways to permute *n* objects, the order of S_n is $|S_n| = n!$

 $(123) \circ (132) = (1)$

Definition

The symmetric group S_n is the set of all permutations of *n* objects. Permutations are combined using composition and since there are *n*! ways to permute *n* objects, the order of S_n is $|S_n| = n!$

Definition

The symmetric group S_n is the set of all permutations of *n* objects. Permutations are combined using composition and since there are *n*! ways to permute *n* objects, the order of S_n is $|S_n| = n!$

Definition

The symmetric group S_n is the set of all permutations of *n* objects. Permutations are combined using composition and since there are *n*! ways to permute *n* objects, the order of S_n is $|S_n| = n!$

 $(123) \circ (132) = (1)$

A Couple Observations

Trivial Group

The set containing only the identity $G = \{e\}$ is a group and is called the **trivial group**.

æ

A Couple Observations

Trivial Group

The set containing only the identity $G = \{e\}$ is a group and is called the **trivial group**.

Rings and Groups

Every ring is an Abelian group using its "addition" operation. Also, the non-zero elements of every field, or units in a ring, form a group using its "multiplication."

C. F. Rocca Jr. (WCSU)

< ロト < 同ト < 三ト < 三ト

Some General Properties

Theorem

Let G be a group and let $a, b, c \in G$, then we have the following properties:

- G has a unique identity element,
- 2 Every element in G has a unique inverse,

3 Right and left cancellation hold:

ab = ac implies b = c
ba = ca implies b = c

(*ab*)⁻¹ = $b^{-1}a^{-1}$

5
$$(a^{-1})^{-1} = a$$

Image: A matrix

Table of Contents

Permutations and Actions

4 The Symmetric Group

æ

C. F. Rocca Jr. (WCSU)

Image: A matrix

E ► < E ►

.

Subgroups

Definition

If G is a group and H is a subset of G which is also a group using the same operation as G, then we say that H is a **subgroup** of G.

Image: Image:

∃ ▶ ∢ ∃ ▶

æ

- If $G = D_6$, then the following are subgroups of G:
 - $H = \langle r \rangle = \{r, r^2, r^3, \dots, r^5, e\} \cong \mathbb{Z}_6$, this is the cyclic subgroup generated by r

(日)

æ

If $G = D_6$, then the following are subgroups of G:

• $H = \langle r \rangle = \{r, r^2, r^3, \dots, r^5, e\} \cong \mathbb{Z}_6$, this is the cyclic subgroup generated by r

• $K = \langle f \rangle = \{f, e\} \cong \mathbb{Z}_2$, this is the cyclic subgroup generated by f

э

- If $G = D_6$, then the following are subgroups of G:
 - $H = \langle r \rangle = \{r, r^2, r^3, \dots, r^5, e\} \cong \mathbb{Z}_6$, this is the cyclic subgroup generated by r
 - $\mathcal{K} = \langle f \rangle = \{f, e\} \cong \mathbb{Z}_2$, this is the cyclic subgroup generated by f
 - $J = \langle r^2 \rangle = \{r^2, r^4, e\} \cong \mathbb{Z}_3$, this is the cyclic subgroup generated by r^2

- If $G = D_6$, then the following are subgroups of G:
 - $H = \langle r \rangle = \{r, r^2, r^3, \dots, r^5, e\} \cong \mathbb{Z}_6$, this is the cyclic subgroup generated by r
 - $K = \langle f \rangle = \{f, e\} \cong \mathbb{Z}_2$, this is the cyclic subgroup generated by f
 - $J = \left< r^2 \right> = \left\{ r^2, r^4, e \right\} \cong \mathbb{Z}_3$, this is the cyclic subgroup generated by r^2
 - $M = \langle r^2, f \rangle = \{r^2, r^4, e, r^2 f, r^4 f, f\} \cong D_3$

- If $G = D_6$, then the following are subgroups of G:
 - $H = \langle r \rangle = \{r, r^2, r^3, \dots, r^5, e\} \cong \mathbb{Z}_6$, this is the cyclic subgroup generated by r
 - $K = \langle f \rangle = \{f, e\} \cong \mathbb{Z}_2$, this is the cyclic subgroup generated by f
 - $J = \left< r^2 \right> = \left\{ r^2, r^4, e \right\} \cong \mathbb{Z}_3$, this is the cyclic subgroup generated by r^2
 - $M = \langle r^2, f \rangle = \{r^2, r^4, e, r^2 f, r^4 f, f\} \cong D_3$
 - Trivial Subgroup $\langle e \rangle$

- If $G = D_6$, then the following are subgroups of G:
 - $H = \langle r \rangle = \{r, r^2, r^3, \dots, r^5, e\} \cong \mathbb{Z}_6$, this is the cyclic subgroup generated by r
 - $K = \langle f \rangle = \{f, e\} \cong \mathbb{Z}_2$, this is the cyclic subgroup generated by f
 - $J = \langle r^2 \rangle = \{r^2, r^4, e\} \cong \mathbb{Z}_3$, this is the cyclic subgroup generated by r^2
 - $M = \langle r^2, f \rangle = \{r^2, r^4, e, r^2 f, r^4 f, f\} \cong D_3$
 - Trivial Subgroup $\langle e \rangle$
 - Entire Group $G = D_6$

If $G = D_n$, then the following are subgroups of G:

- $H = \langle r \rangle = \{r, r^2, r^3, \dots, r^{n-1}, e\} \cong \mathbb{Z}_n$, this is the cyclic subgroup generated by r
- $K = \langle f \rangle = \{f, e\} \cong \mathbb{Z}_2$, this is the cyclic subgroup generated by f
- $J = \langle r^j \rangle = \{r^j, r^{2j}, \dots, r^{(q-1)j}, e\} \cong \mathbb{Z}_q$ for n = qj, this is the cyclic subgroup generated by r^j
- $M = \langle r^j, f \rangle = \{r^j, \dots, r^{(q-1)j}, e, r^j f, \dots, r^{(q-1)j} f, f\} \cong D_q \text{ for } n = qj$
- Trivial Subgroup $\langle e \rangle$
- Entire Group $G = D_n$

э

(日)

Subgroups Generated by Elements

Definition

If G is a group and $g \in G$, then the cyclic subgroup generated by g is

$$\langle g \rangle = \left\{ g^i \Big| i \in \mathbb{Z} \right\}$$

which is **isomorphic** to \mathbb{Z} if $|g| = \infty$ or \mathbb{Z}_n if |g| = n,

C. F. Rocca Jr. (WCSU)

æ

(日) (同) (三) (三)

Subgroups Generated by Elements

Definition

If G is a group and $g \in G$, then the cyclic subgroup generated by g is

$$\langle g \rangle = \left\{ g^i \middle| i \in \mathbb{Z} \right\}$$

which is **isomorphic** to \mathbb{Z} if $|g| = \infty$ or \mathbb{Z}_n if |g| = n,

Definition

If G is a group and $K \subset G$, then the **subgroup generated by** K, $\langle K \rangle$, is defined to be the smallest subgroup of G containing all the elements of K.

Subgroups of \mathbb{Z} and \mathbb{Z}_n

• If $G = \mathbb{Z}$, then for all $n \in \mathbb{Z}$

 $n\mathbb{Z} = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$

is a subgroup of G.

C. F. Rocca Jr. (WCSU)

æ

Subgroups of \mathbb{Z} and \mathbb{Z}_n

• If $G = \mathbb{Z}$, then for all $n \in \mathbb{Z}$

$$n\mathbb{Z} = \{0, \pm n, \pm 2n, \pm 3n, \ldots\}$$

- is a subgroup of G.
- If $G = \mathbb{Z}_n$ and n = qj, then

$$H = \{0, j, 2j, 3j, \dots (q-1)j\}$$

is a subgroup of G.

æ

Image: A matrix

The set of all units modulo 10, U₁₀ = {1,3,7,9}, is a group using multiplication. But, this is not a subgroup of Z₁₀ because the operation in Z₁₀ is addition.

æ

- The set of all units modulo 10, U₁₀ = {1,3,7,9}, is a group using multiplication. But, this is not a subgroup of Z₁₀ because the operation in Z₁₀ is addition.
- Or, in general, the set of all units modulo n,

$$U_n = \{k | k \in \mathbb{Z}_n \land (k, n) = 1\}$$

, is a group using **multiplication**. But, it is not a subgroup of \mathbb{Z}_n because the operation in \mathbb{Z}_n is **addition**.

▶ ∢ ∃ ▶

Image: A matrix and a matrix

- The set of all units modulo 10, U₁₀ = {1,3,7,9}, is a group using multiplication. But, this is not a subgroup of Z₁₀ because the operation in Z₁₀ is addition.
- Or, in general, the set of all units modulo n,

$$U_n = \{k | k \in \mathbb{Z}_n \land (k, n) = 1\}$$

, is a group using **multiplication**. But, it is not a subgroup of \mathbb{Z}_n because the operation in \mathbb{Z}_n is **addition**.

• The set of real numbers, \mathbb{R} , is a group with addition and non-zero reals, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ is a group with multiplication. The latter is not a subgroup of the former.

∃ ► < ∃ ►</p>

- The set of all units modulo 10, U₁₀ = {1,3,7,9}, is a group using multiplication. But, this is not a subgroup of Z₁₀ because the operation in Z₁₀ is addition.
- Or, in general, the set of all units modulo n,

$$U_n = \{k | k \in \mathbb{Z}_n \land (k, n) = 1\}$$

, is a group using **multiplication**. But, it is not a subgroup of \mathbb{Z}_n because the operation in \mathbb{Z}_n is **addition**.

- The set of real numbers, \mathbb{R} , is a group with addition and non-zero reals, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ is a group with multiplication. The latter is not a subgroup of the former.
- In general every ring *R* is an Abelian group using "addition" and the subset of units of *R* is a group with the "multiplication." But, the subset is not a subgroup.

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if

1 *H* is closed: $\forall a, b \in H : ab \in H$

2 Inverses are in $H: \forall a \in H : a^{-1} \in H$

æ

Image: A matrix

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if

1 *H* is closed: $\forall a, b \in H : ab \in H$

2 Inverses are in $H: \forall a \in H : a^{-1} \in H$

Proof.

Associativity is "inherited,"

э

3 1 4 3 1

Image: A matrix

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if

1 *H* is closed: $\forall a, b \in H : ab \in H$

2 Inverses are in $H: \forall a \in H : a^{-1} \in H$

Proof.

- Associativity is "inherited,"
- 2 Closure and inverses are given, and

Note that if G is finite, then condition (1) implies condition (2).

イロト イヨト イヨト

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if

1 *H* is closed: $\forall a, b \in H : ab \in H$

2 Inverses are in $H: \forall a \in H : a^{-1} \in H$

Proof.

- Associativity is "inherited,"
- 2 Closure and inverses are given, and
- **3** $a \in H$ implies $a^{-1} \in H$, so $aa^{-1} = e \in H$

Note that if G is finite, then condition (1) implies condition (2).

Prove $n\mathbb{Z}$ is a subgroup of \mathbb{Z}

• Let $G = \mathbb{Z}$ and $H = n\mathbb{Z} = \{qn | q \in \mathbb{Z}\}$

C. F. Rocca Jr. (WCSU)

Image: A matrix

æ

- * E • * E •

Prove $n\mathbb{Z}$ is a subgroup of \mathbb{Z}

- Let $G = \mathbb{Z}$ and $H = n\mathbb{Z} = \{qn | q \in \mathbb{Z}\}$
- 2 $a \in H$ implies $a = q_a n$ and $-a = -q_a n$; $-a \in H$

э

Prove $n\mathbb{Z}$ is a subgroup of \mathbb{Z}

$$\bullet \quad \mathsf{Let} \ \ \mathsf{G} = \mathbb{Z} \ \mathsf{and} \ \ \mathsf{H} = \mathsf{n}\mathbb{Z} = \{\mathsf{qn} | \mathsf{q} \in \mathbb{Z}\}$$

2)
$$a \in H$$
 implies $a = q_a n$ and $-a = -q_a n$; $-a \in H$

3 $a = q_a n$ and $b = q_b n$ in H implies

$$a+b=q_an+q_bn=(q_a+q_b)n$$

is also in H

æ

Image: A matrix

4 B K 4 B K

Prove $n\mathbb{Z}$ is a subgroup of \mathbb{Z}

$$\bullet \quad \mathsf{Let} \ \ \mathsf{G} = \mathbb{Z} \ \mathsf{and} \ \ \mathsf{H} = \mathsf{n}\mathbb{Z} = \{\mathsf{qn} | \mathsf{q} \in \mathbb{Z}\}$$

2 $a \in H$ implies $a = q_a n$ and $-a = -q_a n$; $-a \in H$

3 $a = q_a n$ and $b = q_b n$ in H implies

$$a+b=q_an+q_bn=(q_a+q_b)n$$

is also in H

● ∴ by the 2-Step Subgroup Test $H = n\mathbb{Z}$ is a subgroup of $G = \mathbb{Z}$

Image: Image:

Table of Contents

Permutations and Actions

æ

C. F. Rocca Jr. (WCSU)

Image: A matrix

E ► < E ►

-

Symmetric Group: (S_n, \circ)

Definition

The symmetric group S_n is the set of all permutations of *n* objects. Permutations are combined using composition and since there are *n*! ways to permute *n* objects, the order of S_n is $|S_n| = n!$

 $(123) \circ (132) = (1)$

æ

E ► < E ►

Image: A matrix and a matrix

æ

E ► < E ►

Image: A matrix and a matrix

C. F. Rocca Jr. (WCSU)

æ

E ► < E ►

• • • • • • • • • •

æ

E ► < E ►

• • • • • • • • • •

æ

E ► < E ►

• • • • • • • • • •

C. F. Rocca Jr. (WCSU)

(134)(24) = (1342)

э

(日) (同) (三) (三)

Image: A matrix and a matrix

æ

< □ > < □ > < □ > < □ > < □ > < □ >

Some examples from S_4 the set of permutations of four objects:

• (12)(123) =

Image: Image:

æ

3 🕨 🖌 3 🕨

-

Some examples from S_4 the set of permutations of four objects:

• (12)(123) = (23)

Image: Image:

æ

3 🕨 🖌 3 🕨

-

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) =

æ

Image: A matrix

.

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)

æ

Image: A matrix

-

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) =

æ

Image: A matrix

Image: A start and a start a start

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)

æ

Image: A matrix

Image: A start and a start a start

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) =

э

- * E • * E •

Image: A matrix

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)

э

→ Ξ ► < Ξ ►</p>

Image: A matrix

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) =

э

- 4 回 ト 4 回 ト 4 回 ト

< □ ▶

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

< □ ▶

- * E • * E •

Some examples from S_4 the set of permutations of four objects:

• (12)(123) = (23)

(14)(13)(12) =

イロト イ団ト イヨト

- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

Some examples from S_4 the set of permutations of four objects:

(12)(123) = (23)

• (14)(13)(12) = (1234)

- 4 回 ト 4 回 ト 4 回 ト

- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

• (14)(13)(12) = (1234)

(日) (同) (三) (三)

(123)(345) =

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

- (14)(13)(12) = (1234)
- (123)(345) = (12345)

(日) (同) (三) (三)

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

- (14)(13)(12) = (1234)
- (123)(345) = (12345)

(日) (同) (三) (三)

• (145)(123) =

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

- (14)(13)(12) = (1234)
- (123)(345) = (12345)
- (145)(123) = (12345)

(日) (同) (三) (三)

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)

- (14)(13)(12) = (1234)
- (123)(345) = (12345)
- (145)(123) = (12345)

(日) (同) (三) (三)

(15)(245)(12) =

• (12)(13)(14) = (1432)

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

- (14)(13)(12) = (1234)
- (123)(345) = (12345)
- (145)(123) = (12345)
- (15)(245)(12) = (14)(25)

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

- (14)(13)(12) = (1234)
- (123)(345) = (12345)
- (145)(123) = (12345)
- (15)(245)(12) = (14)(25)
- (43)(251)(145) =

Sac

(日) (同) (三) (三)

Some examples from S_4 the set of permutations of four objects:

- (12)(123) = (23)
- (123)(12) = (13)
- (12)(34) = (34)(12)
- (12)(23)(34) = (1234)
- (12)(13)(14) = (1432)

- (43)(251)(145) = (134)(25)
- (15)(245)(12) = (14)(25)

• (14)(13)(12) = (1234)• (123)(345) = (12345)

• (145)(123) = (12345)

Theorem

Every permutation can be written as a product of disjoint cycles.

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if σ(a_i) ≠ a_j, for j ≤ i: let a_{i+1} = σ(a_i) be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1, 2, 3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if σ(a_i) ≠ a_j, for j ≤ i: let a_{i+1} = σ(a_i) be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1, 2, 3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

```
Let \sigma = (43)(251)(145) and a_1 = 1:
So we get
```

$$(43)(251)(145) = (a_1)$$

= (1

э

.

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if σ(a_i) ≠ a_j, for j ≤ i: let a_{i+1} = σ(a_i) be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values 1, 2, 3, ..., n are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma = (43)(251)(145)$ and $a_1 = 1$:

•
$$a_2 = \sigma(a_1) = \sigma(1) = 3$$

So we get

$$(43)(251)(145) = (a_1a_2)$$

= (13

э

(日) (同) (三) (三)

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if σ(a_i) ≠ a_j, for j ≤ i: let a_{i+1} = σ(a_i) be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values 1, 2, 3, ..., n are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma = (43)(251)(145)$ and $a_1 = 1$:

•
$$a_3 = \sigma(a_2) = \sigma(3) = 4$$

So we get

$$(43)(251)(145) = (a_1 a_2 a_3) = (134)$$

э

(日) (同) (三) (三)

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if σ(a_i) ≠ a_j, for j ≤ i: let a_{i+1} = σ(a_i) be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1, 2, 3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma = (43)(251)(145)$ and $a_1 = 1$:

•
$$\sigma(a_3) = \sigma(4) = 1$$

So we get

$$\begin{aligned} (43)(251)(145) &= (a_1a_2a_3) \\ &= (134) \end{aligned}$$

э

→ Ξ ► < Ξ ►</p>

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if σ(a_i) ≠ a_j, for j ≤ i: let a_{i+1} = σ(a_i) be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1, 2, 3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma = (43)(251)(145)$ and $a_1 = 1$:

So we get

$$(43)(251)(145) = (a_1a_2a_3)(a_4) = (134)(2$$

э

→ Ξ ► < Ξ ►</p>

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if $\sigma(a_i) \neq a_j$, for $j \leq i$: let $a_{i+1} = \sigma(a_i)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values 1, 2, 3, ..., n are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma = (43)(251)(145)$ and $a_1 = 1$:

•
$$a_5 = \sigma(a_4) = \sigma(2) = 5$$

So we get

$$(43)(251)(145) = (a_1a_2a_3)(a_4a_5)$$

= (134)(25

э

(日) (同) (三) (三)

Proof.

Given a permutation $\sigma \in S_n$ of the values $1, 2, 3, \ldots, n$, let $a_1 = 1$, then for all i

- if σ(a_i) ≠ a_j, for j ≤ i: let a_{i+1} = σ(a_i) be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1, 2, 3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma = (43)(251)(145)$ and $a_1 = 1$:

•
$$\sigma(a_5) = \sigma(5) = 2$$

So we get

$$\begin{aligned} (43)(251)(145) &= (a_1a_2a_3)(a_4a_5) \\ &= (134)(25) \end{aligned}$$

э

→ Ξ ► < Ξ ►</p>

2-Cycles

Theorem

Every permutation can be written as a product of 2-cycles.

Proof.

Suppose that $\sigma = (a_1 a_2 a_3 \cdots a_k)$, then it can be "easily" checked that σ may be written in either of the following ways:

•
$$\sigma = (a_1a_2)(a_2a_3)(a_3a_4)\cdots(a_{k-2}a_{k-1})(a_{k-1}a_k)$$
 or

•
$$\sigma = (a_1a_k)(a_1a_{k-1})\cdots(a_1a_3)(a_1a_2)$$

These two representations may be connected with the observation that:

$$(a_ia_j) = (a_ia_k)(a_ka_j)(a_ia_k),$$

e.g. (14) = (13)(34)(13).

< □ ▶

Shuffling 2-cycles to move a number left:

(123)(45)(13) = (12)(23)(45)(13)

æ

Shuffling 2-cycles to move a number left:

(123)(45)(13) = (12)(23)(45)(13)= (12)(23)(13)(45)

æ

C. F. Rocca Jr. (WCSU)

Shuffling 2-cycles to move a number left:

$$(123)(45)(13) = (12)(23)(45)(13)$$
$$= (12)(23)(13)(45)$$
$$= (12)(13)(12)(13)(13)(45)$$

C. F. Rocca Jr. (WCSU)

æ

E ► < E ►

Image: A matrix

Shuffling 2-cycles to move a number left:

$$123)(45)(13) = (12)(23)(45)(13)$$

= (12)(23)(13)(45)
= (12)(13)(12)(13)(13)(45)
= (12)(13)(12)(45)

æ

E ► < E ►

.

Image: A matrix

Shuffling 2-cycles to move a number left:

$$(123)(45)(13) = (12)(23)(45)(13)$$

= (12)(23)(13)(45)
= (12)(13)(12)(13)(13)(45)
= (12)(13)(12)(45)
= (12)(12)(23)(12)(12)(45)

æ

(< Ξ) < Ξ)

Image: A matrix

Shuffling 2-cycles to move a number left:

$$(123)(45)(13) = (12)(23)(45)(13)$$

= (12)(23)(13)(45)
= (12)(13)(12)(13)(13)(45)
= (12)(13)(12)(45)
= (12)(12)(23)(12)(12)(45)
= (23)(12)(12)(45)

æ

Shuffling 2-cycles to move a number left:

$$123)(45)(13) = (12)(23)(45)(13)$$

= (12)(23)(13)(45)
= (12)(13)(12)(13)(13)(45)
= (12)(13)(12)(45)
= (12)(12)(23)(12)(12)(45)
= (23)(12)(12)(45)

æ

• (ac) = (ab)(bc)(ab)

æ

C. F. Rocca Jr. (WCSU)

- (*ac*) = (*ab*)(*bc*)(*ab*)
- (ac)(ac) = e

æ

- (*ac*) = (*ab*)(*bc*)(*ab*)
- (ac)(ac) = e
- (*ab*)(*cd*) = (*cd*)(*ab*)

æ

- (*ac*) = (*ab*)(*bc*)(*ab*)
- (*ac*)(*ac*) = *e*
- (*ab*)(*cd*) = (*cd*)(*ab*)
- (ab)(ac) = (ab)(ab)(bc)(ab) = (bc)(ab)

æ

• (ac) = (ab)(bc)(ab)

• (ab)(cd) = (cd)(ab)

● (*ac*)(*ac*) = *e*

- (ac)(bc) = (bc)(ab)(bc)(bc) = (bc)(ab)
- (ab)(ac) = (ab)(ab)(bc)(ab) = (bc)(ab)

Cycle Notation: Some Key Observations

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Image: A matrix

æ

∃ ▶ ∢ ∃ ▶

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Theorem

When written as a product of 2-cycles, every permutation is always either a product of an even number or of an odd number of 2-cycles, but not both.

Image: A matrix and a matrix

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Theorem

When written as a product of 2-cycles, every permutation is always either a product of an even number or of an odd number of 2-cycles, but not both.

Theorem

The set of all even permutations, A_n (the alternating group), is a subgroup of S_n .

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Theorem

When written as a product of 2-cycles, every permutation is always either a product of an even number or of an odd number of 2-cycles, but not both.

Theorem

The set of all even permutations, A_n (the alternating group), is a subgroup of S_n . (Which is proved with the 2-Step Subgroup Test.)

Groups and Subgroups

Dr. Chuck Rocca

æ

C. F. Rocca Jr. (WCSU)