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Permutations and Actions
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Permutations and Actions
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Permutations and Actions

Permutations vs. Symmetries
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Permutations and Actions

Shifts and Flips

(Shift,Flip) = (1, 0) = (1, 2n)(Shift,Flip) = (0, 1) = (0, 2n + 1)(Shift,Flip) = (3, 1) = (3, 2n + 1)(Shift,Flip) = (−4, 0) = (−4, 2n)
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Permutations and Actions

Direct Product: Z⊕ Z2

Z⊕ Z2 = {(a, b)|a ∈ Z, b ∈ Z2}

and

∀(a, b), (c, d) ∈ Z⊕ Z2 : (a, b) + (c, d) = (a+ c, b + d)

(0, 0) (1, 0)(−3, 0) (4, 0)

(0, 1)(−5, 1) (3, 1)
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Groups

Group Definition

Definition (Group)

A group is a set G together with a binary operation ∗ such that

1 Closure: ∀a, b ∈ G : a ∗ b ∈ G

2 Associative: ∀a, b, c ∈ G : a ∗ (b ∗ c) = (a ∗ b) ∗ c
3 Identity: ∃e ∈ G ∀a ∈ G : e ∗ a = a ∗ e = a

4 Inverses: ∀a ∈ G ∃a−1 ∈ G : a ∗ a−1 = a−1 ∗ a = e

C. F. Rocca Jr. (WCSU) Groups and Subgroups 9 / 41



Groups

Dihedral Group: (Dn, ◦)

Definition
The Dihedral Group, Dn is the set of all transformations of an n-gon which leave it
fixed as a set, i.e. it appears the same, they are combined using composition. It can be
generated by a single reflection, f , perpendicular to a side and a rotation of
r = 360◦/n. The order of Dn is |Dn| = 2n and it is non-Abelian.
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Groups

Orders

Definition
If G is a group, the order of G is the number of elements in G and is written |G |.

Definition
If G is a group and g ∈ G , then the order of g is the least positive integer k such that
g k = e ∈ G and is written |g | = k. If no such value exists we say |g | = ∞.
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Groups

A Theorem on Orders

Theorem
Given g ∈ G , a group, assume |g | = k:

1 if g l = e, then k |l ,
2 if g i = g j , then i ≡ j (mod k), and

3 if k = qd , then |gd | = q.
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Groups

A Theorem on Orders

Part 1.

1 Assume |g | = k and g l = e

2 l = qk + r with 0 ≤ r < k

3 e = g l = gqk+r = (gk)qg r = eg r = g r

4 r = 0 or we contradict the assumption that k is least

5 ∴ k |l
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Groups

Integers: (Z,+)

Integers: (Z,+)

The integers, Z = {0,±1,±2, . . .} form a group with addition. Since for all a, b ∈ Z
a+ b = b + a, we say that Z is an Abelian group. The order of Z is infinite, |Z| = ∞.
Finally, since we get all the elements of Z by adding and subtracting 1, we say Z is a
cyclic group.
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Groups

Integers Modulo n: (Zn,+)

Integers: (Zn,+)

The integers modulo n, Zn = {0, 1, 2, . . . , n − 1} form a group with addition. Since for
all a, b ∈ Zn a+ b = b + a, we say that Zn is an Abelian group. The order of Zn is n,
|Z| = n. Finally, since we get all the elements of Zn by adding 1, we say Zn is a cyclic
group.
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1 2
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n − 1
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Groups

Direct Product: (Z⊕ Zn,+)

Integers: (Z⊕ Zn,+)

The set Z⊕ Zn = {(a, b)|a ∈ Z, b ∈ Zn} is a group using addition where
(a, b) + (c, d) = (a+ c, b + d). Since each component is Abelian, this group is Abelian,
its order is infinite, but it has a finite subgroup. (This is called the torsion subgroup.)

(0, 0)
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Groups

Direct Product: (G1 ⊕ G2, ∗)

Definition
Given two groups G1 and G2 a direct product of the groups is the set

G1 ⊕ G2 = {(a, b)|a ∈ G1, b ∈ G2}

with the operation
(a, b) ∗ (c, d) = (a ∗G1 c, b ∗G2 d).

The order of |G1 ⊕ G2| = |G1||G2| if they are finite, otherwise it is infinite.
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Groups

Symmetric Group: (Sn, ◦)

Definition
The symmetric group Sn is the set of all permutations of n objects. Permutations are
combined using composition and since there are n! ways to permute n objects, the order
of Sn is |Sn| = n!

1 1 1

2 2 2

3 3 3

(123) ◦ (132) = (1)
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Groups

A Couple Observations

Trivial Group

The set containing only the identity G = {e} is a group and is called the trivial group.

Rings and Groups
Every ring is an Abelian group using its “addition” operation. Also, the non-zero
elements of every field, or units in a ring, form a group using its “multiplication.”
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Groups

Some General Properties

Theorem
Let G be a group and let a, b, c ∈ G , then we have the following properties:

1 G has a unique identity element,

2 Every element in G has a unique inverse,

3 Right and left cancellation hold:

ab = ac implies b = c
ba = ca implies b = c

4 (ab)−1 = b−1a−1

5 (a−1)−1 = a
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Subgroups
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Subgroups

Subgroups

Definition
If G is a group and H is a subset of G which is also a group using the same operation as
G , then we say that H is a subgroup of G .
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Subgroups

Dihedral Subgroups

If G = D6, then the following are subgroups of G :

H = ⟨r⟩ =
{
r , r2, r3, . . . , r5, e

} ∼= Z6, this is the cyclic subgroup
generated by r

K = ⟨f ⟩ = {f , e} ∼= Z2, this is the cyclic subgroup generated by f

J =
〈
r2
〉
=

{
r2, r4, e

} ∼= Z3, this is the cyclic subgroup generated by r2

M =
〈
r2, f

〉
=

{
r2, r4, e, r2f , r4f , f

} ∼= D3

Trivial Subgroup ⟨e⟩

Entire Group G = D6
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Subgroups

Dihedral Subgroups

If G = Dn, then the following are subgroups of G :

H = ⟨r⟩ =
{
r , r2, r3, . . . , rn−1, e

} ∼= Zn, this is the cyclic subgroup
generated by r

K = ⟨f ⟩ = {f , e} ∼= Z2, this is the cyclic subgroup generated by f

J =
〈
r j
〉
=

{
r j , r2j , . . . , r (q−1)j , e

} ∼= Zq for n = qj , this is the cyclic
subgroup generated by r j

M =
〈
r j , f

〉
=

{
r j , . . . , r (q−1)j , e, r j f , . . . , r (q−1)j f , f

} ∼= Dq for n = qj

Trivial Subgroup ⟨e⟩

Entire Group G = Dn
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Subgroups

Subgroups Generated by Elements

Definition
If G is a group and g ∈ G , then the cyclic subgroup generated by g is

⟨g⟩ =
{
g i
∣∣∣i ∈ Z

}
which is isomorphic to Z if |g | = ∞ or Zn if |g | = n,

Definition
If G is a group and K ⊂ G , then the subgroup generated by K , ⟨K⟩, is defined to be
the smallest subgroup of G containing all the elements of K .
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Subgroups

Subgroups of Z and Zn

If G = Z, then for all n ∈ Z

nZ = {0,±n,±2n,±3n, . . .}

is a subgroup of G .

If G = Zn and n = qj , then

H = {0, j , 2j , 3j , . . . (q − 1)j}

is a subgroup of G .
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Subgroups

A Non-Subgroup

The set of all units modulo 10, U10 = {1, 3, 7, 9}, is a group using
multiplication. But, this is not a subgroup of Z10 because the operation in
Z10 is addition.

Or, in general, the set of all units modulo n,

Un = {k|k ∈ Zn ∧ (k, n) = 1}

, is a group using multiplication. But, it is not a subgroup of Zn because
the operation in Zn is addition.

The set of real numbers, R, is a group with addition and non-zero reals,
R∗ = R \ {0} is a group with multiplication. The latter is not a subgroup of
the former.

In general every ring R is an Abelian group using “addition” and the subset
of units of R is a group with the “multiplication.” But, the subset is not a
subgroup.
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Subgroups

Subgroup Tests

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if

1 H is closed: ∀a, b ∈ H : ab ∈ H

2 Inverses are in H: ∀a ∈ H : a−1 ∈ H

Proof.

1 Associativity is “inherited,”

2 Closure and inverses are given, and

3 a ∈ H implies a−1 ∈ H, so aa−1 = e ∈ H

Note that if G is finite, then condition (1) implies condition (2).
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Subgroups

Example Subgroup Test

Prove nZ is a subgroup of Z
1 Let G = Z and H = nZ = {qn|q ∈ Z}

2 a ∈ H implies a = qan and −a = −qan; −a ∈ H

3 a = qan and b = qbn in H implies

a+ b = qan + qbn = (qa + qb)n

is also in H

4 ∴ by the 2-Step Subgroup Test H = nZ is a subgroup of G = Z
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The Symmetric Group
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The Symmetric Group

Symmetric Group: (Sn, ◦)

Definition
The symmetric group Sn is the set of all permutations of n objects. Permutations are
combined using composition and since there are n! ways to permute n objects, the order
of Sn is |Sn| = n!

1 1 1

2 2 2

3 3 3

(123) ◦ (132) = (1)
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The Symmetric Group

Cycle Notation Concept

(12345)

1

2

3

4

5
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The Symmetric Group

Cycle Notation Composition

1 1 1

2 2 2

3 3 3

4 4 4

(134)(24) = (1342)
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The Symmetric Group

Cycle Notation Composition

1 1 1

2 2 2

3 3 3

4 4 4

(134)(24) = (1342)

2nd 1st
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The Symmetric Group

Cycle Notation: Lots of Little Examples

Some examples from S4 the set of permutations of four objects:

(12)(123) =

(23)

(123)(12) =

(13)

(12)(34) =

(34)(12)

(12)(23)(34) =

(1234)

(12)(13)(14) =

(1432)

(14)(13)(12) =

(1234)

(123)(345) =

(12345)

(145)(123) =

(12345)

(15)(245)(12) =

(14)(25)

(43)(251)(145) =

(134)(25)
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The Symmetric Group

Disjoint Cycles

Theorem
Every permutation can be written as a product of disjoint cycles.

Proof.
Given a permutation σ ∈ Sn of the values 1, 2, 3, . . . , n, let a1 = 1, then for all i

if σ(ai ) ̸= aj , for j ≤ i : let ai+1 = σ(ai ) be the next element in the current
cycle

else: close the current cycle, let ai+1 be an element not already in a cycle

Repeat this until all the values 1, 2, 3, . . . , n are used. The iterative definition insures
that any new cycles will be equal or are disjoint. Since the new cycles are defined using
σ it is the same permutation.

Let σ = (43)(251)(145) and a1 = 1:
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Let σ = (43)(251)(145) and a1 = 1:
So we get

(43)(251)(145) = (a1

a2a3)(a4a5)

= (1

34)(25)
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The Symmetric Group

Disjoint Cycles

Proof.
Given a permutation σ ∈ Sn of the values 1, 2, 3, . . . , n, let a1 = 1, then for all i

if σ(ai ) ̸= aj , for j ≤ i : let ai+1 = σ(ai ) be the next element in the current
cycle

else: close the current cycle, let ai+1 be an element not already in a cycle

Repeat this until all the values 1, 2, 3, . . . , n are used. The iterative definition insures
that any new cycles will be equal or are disjoint. Since the new cycles are defined using
σ it is the same permutation.

Let σ = (43)(251)(145) and a1 = 1:

a2 = σ(a1) = σ(1) = 3

So we get

(43)(251)(145) = (a1a2

a3)(a4a5)

= (13

4)(25)
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The Symmetric Group

Disjoint Cycles

Proof.
Given a permutation σ ∈ Sn of the values 1, 2, 3, . . . , n, let a1 = 1, then for all i

if σ(ai ) ̸= aj , for j ≤ i : let ai+1 = σ(ai ) be the next element in the current
cycle

else: close the current cycle, let ai+1 be an element not already in a cycle

Repeat this until all the values 1, 2, 3, . . . , n are used. The iterative definition insures
that any new cycles will be equal or are disjoint. Since the new cycles are defined using
σ it is the same permutation.

Let σ = (43)(251)(145) and a1 = 1:

a3 = σ(a2) = σ(3) = 4

So we get

(43)(251)(145) = (a1a2a3

)(a4a5)

= (134

)(25)
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The Symmetric Group

Disjoint Cycles

Proof.
Given a permutation σ ∈ Sn of the values 1, 2, 3, . . . , n, let a1 = 1, then for all i

if σ(ai ) ̸= aj , for j ≤ i : let ai+1 = σ(ai ) be the next element in the current
cycle

else: close the current cycle, let ai+1 be an element not already in a cycle

Repeat this until all the values 1, 2, 3, . . . , n are used. The iterative definition insures
that any new cycles will be equal or are disjoint. Since the new cycles are defined using
σ it is the same permutation.

Let σ = (43)(251)(145) and a1 = 1:

σ(a3) = σ(4) = 1

So we get

(43)(251)(145) = (a1a2a3)

(a4a5)

= (134)

(25)

C. F. Rocca Jr. (WCSU) Groups and Subgroups 36 / 41



The Symmetric Group

Disjoint Cycles

Proof.
Given a permutation σ ∈ Sn of the values 1, 2, 3, . . . , n, let a1 = 1, then for all i

if σ(ai ) ̸= aj , for j ≤ i : let ai+1 = σ(ai ) be the next element in the current
cycle

else: close the current cycle, let ai+1 be an element not already in a cycle

Repeat this until all the values 1, 2, 3, . . . , n are used. The iterative definition insures
that any new cycles will be equal or are disjoint. Since the new cycles are defined using
σ it is the same permutation.

Let σ = (43)(251)(145) and a1 = 1:

a4 = 2

So we get

(43)(251)(145) = (a1a2a3)(a4

a5)

= (134)(2

5)
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The Symmetric Group

Disjoint Cycles

Proof.
Given a permutation σ ∈ Sn of the values 1, 2, 3, . . . , n, let a1 = 1, then for all i

if σ(ai ) ̸= aj , for j ≤ i : let ai+1 = σ(ai ) be the next element in the current
cycle

else: close the current cycle, let ai+1 be an element not already in a cycle

Repeat this until all the values 1, 2, 3, . . . , n are used. The iterative definition insures
that any new cycles will be equal or are disjoint. Since the new cycles are defined using
σ it is the same permutation.

Let σ = (43)(251)(145) and a1 = 1:

a5 = σ(a4) = σ(2) = 5

So we get

(43)(251)(145) = (a1a2a3)(a4a5

)

= (134)(25

)
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The Symmetric Group

2-Cycles

Theorem
Every permutation can be written as a product of 2-cycles.

Proof.
Suppose that σ = (a1a2a3 · · · ak), then it can be “easily” checked that σ may be written

in either of the following ways:

σ = (a1a2)(a2a3)(a3a4) · · · (ak−2ak−1)(ak−1ak) or

σ = (a1ak)(a1ak−1) · · · (a1a3)(a1a2).
These two representations may be connected with the observation that:

(aiaj) = (aiak)(akaj)(aiak),

e.g. (14) = (13)(34)(13).
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The Symmetric Group

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

(123)(45)(13) = (12)(23)(45)(13)

= (12)(23)(13)(45)

= (12)(13)(12)(13)(13)(45)

= (12)(13)(12)(45)

= (12)(12)(23)(12)(12)(45)

= (23)(12)(12)(45)

= (23)(45)
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The Symmetric Group

Cycle Notation: Some Key Observations

(ac) = (ab)(bc)(ab)

(ac)(ac) = e

(ab)(cd) = (cd)(ab)

(ab)(ac) = (ab)(ab)(bc)(ab) = (bc)(ab)

(ac)(bc) = (bc)(ab)(bc)(bc) = (bc)(ab)
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The Symmetric Group

Even and Odd Permutations

Lemma
Whenever it is written as a product of 2-cycles, the identity permutation is always a
product of an even number of 2-cycles.

Theorem
When written as a product of 2-cycles, every permutation is always either a product of
an even number or of an odd number of 2-cycles, but not both.

Theorem
The set of all even permutations, An (the alternating group), is a subgroup of Sn.
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The Symmetric Group

Even and Odd Permutations

Lemma
Whenever it is written as a product of 2-cycles, the identity permutation is always a
product of an even number of 2-cycles.

Theorem
When written as a product of 2-cycles, every permutation is always either a product of
an even number or of an odd number of 2-cycles, but not both.

Theorem
The set of all even permutations, An (the alternating group), is a subgroup of Sn.
(Which is proved with the 2-Step Subgroup Test.)
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