Groups and Subgroups

Dr. Chuck Rocca

WESTERN CONNECTICUT STATE UNIVERSITY
MACRICOSTAS
SCHOOL OF ARTS 8 SCIENCES

C. F. Rocca Jr. (WCSU)

Groups and Subgroups

Table of Contents

(1) Permutations and Actions
(2) Groups
(3) Subgroups
(4) The Symmetric Group

Triangular Symmetries

Triangular Symmetries

Triangular Symmetries

e

Triangular Symmetries

Triangular Symmetries

Triangular Symmetries

Focus on Permutations

Focus on Permutations

(1)

Focus on Permutations

(1)

Focus on Permutations

Focus on Permutations

R^{2}

(132)

e

Focus on Permutations

Permutations vs. Symmetries

- $e=(1)$

Permutations vs. Symmetries

- $e=(1)$
- $R=(123)$

Permutations vs. Symmetries

- $e=(1)$
- $R=(123)$
- $R^{2}=(132)=(123)(123)$

Permutations vs. Symmetries

- $e=(1)$
- $R=(123)$
- $R^{2}=(132)=(123)(123)$
- $f=(23)$

Permutations vs. Symmetries

- $e=(1)$
- $R f=(12)=(123)(23)$
- $R=(123)$
- $R^{2}=(132)=(123)(123)$
- $f=(23)$

Permutations vs. Symmetries

- $e=(1)$
- $R f=(12)=(123)(23)$
- $R=(123)$
- $R^{2} f=(13)=(132)(23)$
- $R^{2}=(132)=(123)(123)$
- $f=(23)$

Permutations vs. Symmetries

- $e=(1)$
- $R f=(12)=(123)(23)$
- $R=(123)$
- $R^{2} f=(13)=(132)(23)$
- $R^{2}=(132)=(123)(123)$
- $f R=(23)(123)=(13)$
- $f=(23)$

Permutations vs. Symmetries

- $e=(1)$
- $R=(123)$
- $R f=(12)=(123)(23)$
- $R^{2} f=(13)=(132)(23)$
- $R^{2}=(132)=(123)(123)$
- $f=(23)$

- $f R=(23)(123)=(13)$
- $f R^{2}=(23)(132)=(12)$

Permutations vs. Symmetries

- $e=(1)$
- $R f=(12)=(123)(23)$
- $R=(123)$
- $R^{2} f=(13)=(132)(23)$
- $R^{2}=(132)=(123)(123)$
- $f R=(23)(123)=(13)$
- $f=(23)$

- $f R^{2}=(23)(132)=(12)$

$$
f r^{k}=r^{3-k} f
$$

Shifts and Flips

C. F. Rocca Jr. (WCSU)

Groups and Subgroups

Shifts and Flips

$$
(\text { Shift, Flip })=(1,0)=(1,2 n)
$$

Shifts and Flips

$($ Shift, Flip $)=(0,1)=(0,2 n+1)$

C. F. Rocca Jr. (WCSU)

Shifts and Flips

$($ Shift, Flip $)=(3,1)=(3,2 n+1)$

C. F. Rocca Jr. (WCSU)

Shifts and Flips

(Shift, Flip $)=(-4,0)=(-4,2 n)$

Direct Product: $\mathbb{Z} \oplus \mathbb{Z}_{2}$

$$
\begin{gathered}
\mathbb{Z} \oplus \mathbb{Z}_{2}=\left\{(a, b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}_{2}\right\} \\
\text { and }
\end{gathered}
$$

$$
\forall(a, b),(c, d) \in \mathbb{Z} \oplus \mathbb{Z}_{2}:(a, b)+(c, d)=(a+c, b+d)
$$

Table of Contents

(1) Permutations and Actions
(2) Groups
(3) Subgroups
(4) The Symmetric Group

Group Definition

Definition (Group)

A group is a set G together with a binary operation $*$ such that
(1) Closure: $\forall a, b \in G: a * b \in G$
(2) Associative: $\forall a, b, c \in G: a *(b * c)=(a * b) * c$
(3) Identity: $\exists e \in G \forall a \in G: e * a=a * e=a$
4) Inverses: $\forall a \in G \exists a^{-1} \in G: a * a^{-1}=a^{-1} * a=e$

Dihedral Group: $\left(D_{n}, \circ\right)$

Definition

The Dihedral Group, D_{n} is the set of all transformations of an n-gon which leave it fixed as a set, i.e. it appears the same, they are combined using composition. It can be generated by a single reflection, f, perpendicular to a side and a rotation of $r=360^{\circ} / n$. The order of D_{n} is $\left|D_{n}\right|=2 n$ and it is non-Abelian.

Dihedral Group: $\left(D_{n}, \circ\right)$

Definition

The Dihedral Group, D_{n} is the set of all transformations of an n-gon which leave it fixed as a set, i.e. it appears the same, they are combined using composition. It can be generated by a single reflection, f, perpendicular to a side and a rotation of $r=360^{\circ} / n$. The order of D_{n} is $\left|D_{n}\right|=2 n$ and it is non-Abelian.

Dihedral Group: $\left(D_{n}, \circ\right)$

Definition

The Dihedral Group, D_{n} is the set of all transformations of an n-gon which leave it fixed as a set, i.e. it appears the same, they are combined using composition. It can be generated by a single reflection, f, perpendicular to a side and a rotation of $r=360^{\circ} / n$. The order of D_{n} is $\left|D_{n}\right|=2 n$ and it is non-Abelian.

Orders

Definition

If G is a group, the order of G is the number of elements in G and is written $|G|$.

Orders

Definition

If G is a group, the order of G is the number of elements in G and is written $|G|$.

Definition

If G is a group and $g \in G$, then the order of g is the least positive integer k such that $g^{k}=e \in G$ and is written $|g|=k$. If no such value exists we say $|g|=\infty$.

A Theorem on Orders

Theorem

Given $g \in G$, a group, assume $|g|=k$:
(1) if $g^{\prime}=e$, then $k \mid l$,
(2) if $g^{i}=g^{j}$, then $i \equiv j(\bmod k)$, and
(3) if $k=q d$, then $\left|g^{d}\right|=q$.

A Theorem on Orders

Part 1.

A Theorem on Orders

Part 1.

(1) Assume $|g|=k$ and $g^{\prime}=e$

A Theorem on Orders

Part 1.

(1) Assume $|g|=k$ and $g^{\prime}=e$
(2) $I=q k+r$ with $0 \leq r<k$

A Theorem on Orders

Part 1.

(1) Assume $|g|=k$ and $g^{\prime}=e$
(2) $I=q k+r$ with $0 \leq r<k$
(3) $e=g^{l}=g^{q k+r}=\left(g^{k}\right)^{q} g^{r}=e g^{r}=g^{r}$

A Theorem on Orders

Part 1.

(1) Assume $|g|=k$ and $g^{l}=e$
(2) $I=q k+r$ with $0 \leq r<k$
(3) $e=g^{\prime}=g^{q k+r}=\left(g^{k}\right)^{q} g^{r}=e g^{r}=g^{r}$
(9) $r=0$ or we contradict the assumption that k is least

A Theorem on Orders

Part 1.

(1) Assume $|g|=k$ and $g^{\prime}=e$
(2) $I=q k+r$ with $0 \leq r<k$
(3) $e=g^{\prime}=g^{q k+r}=\left(g^{k}\right)^{q} g^{r}=e g^{r}=g^{r}$
(9) $r=0$ or we contradict the assumption that k is least
(3) $\therefore k \mid l$

A Theorem on Orders

Theorem

Given $g \in G$, a group, assume $|g|=k$:
(1) if $g^{\prime}=e$, then $k \mid l$,
(2) if $g^{i}=g^{j}$, then $i \equiv j(\bmod k)$, and
(3) if $k=q d$, then $\left|g^{d}\right|=q$.

Integers: $(\mathbb{Z},+)$

Integers: $(\mathbb{Z},+)$

The integers, $\mathbb{Z}=\{0, \pm 1, \pm 2, \ldots\}$ form a group with addition. Since for all $a, b \in \mathbb{Z}$ $a+b=b+a$, we say that \mathbb{Z} is an Abelian group. The order of \mathbb{Z} is infinite, $|\mathbb{Z}|=\infty$. Finally, since we get all the elements of \mathbb{Z} by adding and subtracting 1 , we say \mathbb{Z} is a cyclic group.

Integers Modulo $n:\left(\mathbb{Z}_{n},+\right)$

Integers: $\left(\mathbb{Z}_{n},+\right)$

The integers modulo $n, \mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$ form a group with addition. Since for all $a, b \in \mathbb{Z}_{n} a+b=b+a$, we say that \mathbb{Z}_{n} is an Abelian group. The order of \mathbb{Z}_{n} is n, $|\mathbb{Z}|=n$. Finally, since we get all the elements of \mathbb{Z}_{n} by adding 1 , we say \mathbb{Z}_{n} is a cyclic group.

Direct Product: $\left(\mathbb{Z} \oplus \mathbb{Z}_{n},+\right)$

Integers: $\left(\mathbb{Z} \oplus \mathbb{Z}_{n},+\right)$

The set $\mathbb{Z} \oplus \mathbb{Z}_{n}=\left\{(a, b) \mid a \in \mathbb{Z}, b \in \mathbb{Z}_{n}\right\}$ is a group using addition where $(a, b)+(c, d)=(a+c, b+d)$. Since each component is Abelian, this group is Abelian, its order is infinite, but it has a finite subgroup. (This is called the torsion subgroup.)

Direct Product: $\left(G_{1} \oplus G_{2}, *\right)$

Definition

Given two groups G_{1} and G_{2} a direct product of the groups is the set

$$
G_{1} \oplus G_{2}=\left\{(a, b) \mid a \in G_{1}, b \in G_{2}\right\}
$$

with the operation

$$
(a, b) *(c, d)=\left(a *_{G_{1}} c, b *_{G_{2}} d\right)
$$

The order of $\left|G_{1} \oplus G_{2}\right|=\left|G_{1}\right|\left|G_{2}\right|$ if they are finite, otherwise it is infinite.

Symmetric Group: $\left(S_{n}, \circ\right)$

Definition

The symmetric group $\mathbf{S}_{\mathbf{n}}$ is the set of all permutations of n objects. Permutations are combined using composition and since there are n ! ways to permute n objects, the order of S_{n} is $\left|S_{n}\right|=n$!

$(123) \circ(132)=(1)$

Symmetric Group: $\left(S_{n}, \circ\right)$

Definition

The symmetric group $\mathbf{S}_{\mathbf{n}}$ is the set of all permutations of n objects. Permutations are combined using composition and since there are n ! ways to permute n objects, the order of S_{n} is $\left|S_{n}\right|=n$!

$(123) \circ(132)=(1)$

Symmetric Group: $\left(S_{n}, \circ\right)$

Definition

The symmetric group $\mathbf{S}_{\mathbf{n}}$ is the set of all permutations of n objects. Permutations are combined using composition and since there are n ! ways to permute n objects, the order of S_{n} is $\left|S_{n}\right|=n$!

$$
(123) \circ(132)=(1)
$$

Symmetric Group: $\left(S_{n}, \circ\right)$

Definition

The symmetric group $\mathbf{S}_{\mathbf{n}}$ is the set of all permutations of n objects. Permutations are combined using composition and since there are n ! ways to permute n objects, the order of S_{n} is $\left|S_{n}\right|=n$!

$(123) \circ(132)=(1)$

A Couple Observations

Trivial Group

The set containing only the identity $G=\{e\}$ is a group and is called the trivial group.

A Couple Observations

Trivial Group

The set containing only the identity $G=\{e\}$ is a group and is called the trivial group.

Rings and Groups

Every ring is an Abelian group using its "addition" operation. Also, the non-zero elements of every field, or units in a ring, form a group using its "multiplication."

Some General Properties

Theorem

Let G be a group and let $a, b, c \in G$, then we have the following properties:
(1) G has a unique identity element,
(2) Every element in G has a unique inverse,
(3) Right and left cancellation hold:

- $a b=a c$ implies $b=c$
- $b a=c a$ implies $b=c$
(4) $(a b)^{-1}=b^{-1} a^{-1}$
(5) $\left(a^{-1}\right)^{-1}=a$

Table of Contents

(1) Permutations and Actions
(2) Groups
(3) Subgroups

4 The Symmetric Group

Subgroups

Definition

If G is a group and H is a subset of G which is also a group using the same operation as G, then we say that H is a subgroup of G.

Dihedral Subgroups

If $G=D_{6}$, then the following are subgroups of G :

- $H=\langle r\rangle=\left\{r, r^{2}, r^{3}, \ldots, r^{5}, e\right\} \cong \mathbb{Z}_{6}$, this is the cyclic subgroup generated by r

Dihedral Subgroups

If $G=D_{6}$, then the following are subgroups of G :

- $H=\langle r\rangle=\left\{r, r^{2}, r^{3}, \ldots, r^{5}, e\right\} \cong \mathbb{Z}_{6}$, this is the cyclic subgroup generated by r
- $K=\langle f\rangle=\{f, e\} \cong \mathbb{Z}_{2}$, this is the cyclic subgroup generated by f

Dihedral Subgroups

If $G=D_{6}$, then the following are subgroups of G :

- $H=\langle r\rangle=\left\{r, r^{2}, r^{3}, \ldots, r^{5}, e\right\} \cong \mathbb{Z}_{6}$, this is the cyclic subgroup generated by r
- $K=\langle f\rangle=\{f, e\} \cong \mathbb{Z}_{2}$, this is the cyclic subgroup generated by f
- $J=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, e\right\} \cong \mathbb{Z}_{3}$, this is the cyclic subgroup generated by r^{2}

Dihedral Subgroups

If $G=D_{6}$, then the following are subgroups of G :

- $H=\langle r\rangle=\left\{r, r^{2}, r^{3}, \ldots, r^{5}, e\right\} \cong \mathbb{Z}_{6}$, this is the cyclic subgroup generated by r
- $K=\langle f\rangle=\{f, e\} \cong \mathbb{Z}_{2}$, this is the cyclic subgroup generated by f
- $J=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, e\right\} \cong \mathbb{Z}_{3}$, this is the cyclic subgroup generated by r^{2}
- $M=\left\langle r^{2}, f\right\rangle=\left\{r^{2}, r^{4}, e, r^{2} f, r^{4} f, f\right\} \cong D_{3}$

Dihedral Subgroups

If $G=D_{6}$, then the following are subgroups of G :

- $H=\langle r\rangle=\left\{r, r^{2}, r^{3}, \ldots, r^{5}, e\right\} \cong \mathbb{Z}_{6}$, this is the cyclic subgroup generated by r
- $K=\langle f\rangle=\{f, e\} \cong \mathbb{Z}_{2}$, this is the cyclic subgroup generated by f
- $J=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, e\right\} \cong \mathbb{Z}_{3}$, this is the cyclic subgroup generated by r^{2}
- $M=\left\langle r^{2}, f\right\rangle=\left\{r^{2}, r^{4}, e, r^{2} f, r^{4} f, f\right\} \cong D_{3}$
- Trivial Subgroup $\langle e\rangle$

Dihedral Subgroups

If $G=D_{6}$, then the following are subgroups of G :

- $H=\langle r\rangle=\left\{r, r^{2}, r^{3}, \ldots, r^{5}, e\right\} \cong \mathbb{Z}_{6}$, this is the cyclic subgroup generated by r
- $K=\langle f\rangle=\{f, e\} \cong \mathbb{Z}_{2}$, this is the cyclic subgroup generated by f
- $J=\left\langle r^{2}\right\rangle=\left\{r^{2}, r^{4}, e\right\} \cong \mathbb{Z}_{3}$, this is the cyclic subgroup generated by r^{2}
- $M=\left\langle r^{2}, f\right\rangle=\left\{r^{2}, r^{4}, e, r^{2} f, r^{4} f, f\right\} \cong D_{3}$
- Trivial Subgroup $\langle e\rangle$
- Entire Group $G=D_{6}$

Dihedral Subgroups

If $G=D_{n}$, then the following are subgroups of G :

- $H=\langle r\rangle=\left\{r, r^{2}, r^{3}, \ldots, r^{n-1}, e\right\} \cong \mathbb{Z}_{n}$, this is the cyclic subgroup generated by r
- $K=\langle f\rangle=\{f, e\} \cong \mathbb{Z}_{2}$, this is the cyclic subgroup generated by f
- $J=\left\langle r^{j}\right\rangle=\left\{r^{j}, r^{2 j}, \ldots, r^{(q-1) j}, e\right\} \cong \mathbb{Z}_{q}$ for $n=q j$, this is the cyclic subgroup generated by r^{j}
- $M=\left\langle r^{j}, f\right\rangle=\left\{r^{j}, \ldots, r^{(q-1) j}, e, r^{j} f, \ldots, r^{(q-1) j} f, f\right\} \cong D_{q}$ for $n=q j$
- Trivial Subgroup $\langle e\rangle$
- Entire Group $G=D_{n}$

Subgroups Generated by Elements

Definition

If G is a group and $g \in G$, then the cyclic subgroup generated by g is

$$
\langle g\rangle=\left\{g^{i} \mid i \in \mathbb{Z}\right\}
$$

which is isomorphic to \mathbb{Z} if $|g|=\infty$ or \mathbb{Z}_{n} if $|g|=n$,

Subgroups Generated by Elements

Definition

If G is a group and $g \in G$, then the cyclic subgroup generated by g is

$$
\langle g\rangle=\left\{g^{i} \mid i \in \mathbb{Z}\right\}
$$

which is isomorphic to \mathbb{Z} if $|g|=\infty$ or \mathbb{Z}_{n} if $|g|=n$,

Definition

If G is a group and $K \subset G$, then the subgroup generated by $K,\langle K\rangle$, is defined to be the smallest subgroup of G containing all the elements of K.

Subgroups of \mathbb{Z} and \mathbb{Z}_{n}

- If $G=\mathbb{Z}$, then for all $n \in \mathbb{Z}$

$$
n \mathbb{Z}=\{0, \pm n, \pm 2 n, \pm 3 n, \ldots\}
$$

is a subgroup of G.

Subgroups of \mathbb{Z} and \mathbb{Z}_{n}

- If $G=\mathbb{Z}$, then for all $n \in \mathbb{Z}$

$$
n \mathbb{Z}=\{0, \pm n, \pm 2 n, \pm 3 n, \ldots\}
$$

is a subgroup of G.

- If $G=\mathbb{Z}_{n}$ and $n=q j$, then

$$
H=\{0, j, 2 j, 3 j, \ldots(q-1) j\}
$$

is a subgroup of G.

A Non-Subgroup

- The set of all units modulo $10, U_{10}=\{1,3,7,9\}$, is a group using multiplication. But, this is not a subgroup of \mathbb{Z}_{10} because the operation in \mathbb{Z}_{10} is addition.

A Non-Subgroup

- The set of all units modulo $10, U_{10}=\{1,3,7,9\}$, is a group using multiplication. But, this is not a subgroup of \mathbb{Z}_{10} because the operation in \mathbb{Z}_{10} is addition.
- Or, in general, the set of all units modulo n,

$$
U_{n}=\left\{k \mid k \in \mathbb{Z}_{n} \wedge(k, n)=1\right\}
$$

, is a group using multiplication. But, it is not a subgroup of \mathbb{Z}_{n} because the operation in \mathbb{Z}_{n} is addition.

A Non-Subgroup

- The set of all units modulo $10, U_{10}=\{1,3,7,9\}$, is a group using multiplication. But, this is not a subgroup of \mathbb{Z}_{10} because the operation in \mathbb{Z}_{10} is addition.
- Or, in general, the set of all units modulo n,

$$
U_{n}=\left\{k \mid k \in \mathbb{Z}_{n} \wedge(k, n)=1\right\}
$$

, is a group using multiplication. But, it is not a subgroup of \mathbb{Z}_{n} because the operation in \mathbb{Z}_{n} is addition.

- The set of real numbers, \mathbb{R}, is a group with addition and non-zero reals, $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ is a group with multiplication. The latter is not a subgroup of the former.

A Non-Subgroup

- The set of all units modulo $10, U_{10}=\{1,3,7,9\}$, is a group using multiplication. But, this is not a subgroup of \mathbb{Z}_{10} because the operation in \mathbb{Z}_{10} is addition.
- Or, in general, the set of all units modulo n,

$$
U_{n}=\left\{k \mid k \in \mathbb{Z}_{n} \wedge(k, n)=1\right\}
$$

, is a group using multiplication. But, it is not a subgroup of \mathbb{Z}_{n} because the operation in \mathbb{Z}_{n} is addition.

- The set of real numbers, \mathbb{R}, is a group with addition and non-zero reals, $\mathbb{R}^{*}=\mathbb{R} \backslash\{0\}$ is a group with multiplication. The latter is not a subgroup of the former.
- In general every ring R is an Abelian group using "addition" and the subset of units of R is a group with the "multiplication." But, the subset is not subgroup.

Subgroup Tests

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if
(1) H is closed: $\forall a, b \in H: a b \in H$
(2) Inverses are in $H: \forall a \in H: a^{-1} \in H$

Subgroup Tests

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if
(1) H is closed: $\forall a, b \in H: a b \in H$
(2) Inverses are in $H: \forall a \in H: a^{-1} \in H$

Proof.

(1) Associativity is "inherited,"

Subgroup Tests

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if
(1) H is closed: $\forall a, b \in H: a b \in H$
(2) Inverses are in $H: \forall a \in H: a^{-1} \in H$

Proof.

(1) Associativity is "inherited,"
(2) Closure and inverses are given, and

Note that if G is finite, then condition (1) implies condition (2).

Subgroup Tests

Theorem (Two-Step Subgroup Test)

A non-empty subset H of a group G is subgroup of G if
(1) H is closed: $\forall a, b \in H: a b \in H$
(2) Inverses are in $H: \forall a \in H: a^{-1} \in H$

Proof.

(1) Associativity is "inherited,"
(2) Closure and inverses are given, and
(3) $a \in H$ implies $a^{-1} \in H$, so $a a^{-1}=e \in H$

Note that if G is finite, then condition (1) implies condition (2).

Example Subgroup Test

Prove $\mathrm{n} \mathbb{Z}$ is a subgroup of \mathbb{Z}

(1) Let $G=\mathbb{Z}$ and $H=n \mathbb{Z}=\{q n \mid q \in \mathbb{Z}\}$

Example Subgroup Test

Prove $n \mathbb{Z}$ is a subgroup of \mathbb{Z}

(1) Let $G=\mathbb{Z}$ and $H=n \mathbb{Z}=\{q n \mid q \in \mathbb{Z}\}$
(2) $a \in H$ implies $a=q_{a} n$ and $-a=-q_{a} n ;-a \in H$

Example Subgroup Test

Prove $n \mathbb{Z}$ is a subgroup of \mathbb{Z}

(1) Let $G=\mathbb{Z}$ and $H=n \mathbb{Z}=\{q n \mid q \in \mathbb{Z}\}$
(2) $a \in H$ implies $a=q_{a} n$ and $-a=-q_{a} n ;-a \in H$
(3) $a=q_{a} n$ and $b=q_{b} n$ in H implies

$$
a+b=q_{a} n+q_{b} n=\left(q_{a}+q_{b}\right) n
$$

is also in H

Example Subgroup Test

Prove $n \mathbb{Z}$ is a subgroup of \mathbb{Z}

(1) Let $G=\mathbb{Z}$ and $H=n \mathbb{Z}=\{q n \mid q \in \mathbb{Z}\}$
(2) $a \in H$ implies $a=q_{a} n$ and $-a=-q_{a} n ;-a \in H$
(3) $a=q_{a} n$ and $b=q_{b} n$ in H implies

$$
a+b=q_{a} n+q_{b} n=\left(q_{a}+q_{b}\right) n
$$

is also in H
(1) \therefore by the 2-Step Subgroup Test $H=n \mathbb{Z}$ is a subgroup of $G=\mathbb{Z}$

Table of Contents

(1) Permutations and Actions

(2) Groups
(3) Subgroups
(4) The Symmetric Group

Symmetric Group: $\left(S_{n}, \circ\right)$

Definition

The symmetric group $\mathbf{S}_{\mathbf{n}}$ is the set of all permutations of n objects. Permutations are combined using composition and since there are n ! ways to permute n objects, the order of S_{n} is $\left|S_{n}\right|=n$!

$(123) \circ(132)=(1)$

Cycle Notation Concept

(12345)

Cycle Notation Composition

$$
\begin{gathered}
(134)(24)=(1342)
\end{gathered}
$$

Cycle Notation Composition

Cycle Notation Composition

Cycle Notation Composition

$$
(134)(24)=(1342)
$$

Cycle Notation Composition

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=(13)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=(13)$
- $(12)(34)=$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=(13)$
- $(12)(34)=(34)(12)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=(13)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=(13)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=(13)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(123)(12)=(13)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=$
- $(123)(12)=(13)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=(12345)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=(12345)$
- $(12)(34)=(34)(12)$
- $(145)(123)=$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=(12345)$
- $(145)(123)=(12345)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=(12345)$
- $(12)(34)=(34)(12)$
- $(145)(123)=(12345)$
- $(12)(23)(34)=(1234)$
- $(15)(245)(12)=$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=(12345)$
- $(12)(34)=(34)(12)$
- $(145)(123)=(12345)$
- $(12)(23)(34)=(1234)$
- $(15)(245)(12)=(14)(25)$
- $(12)(13)(14)=(1432)$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=(12345)$
- $(12)(34)=(34)(12)$
- $(145)(123)=(12345)$
- $(12)(23)(34)=(1234)$
- $(15)(245)(12)=(14)(25)$
- $(12)(13)(14)=(1432)$
- $(43)(251)(145)=$

Cycle Notation: Lots of Little Examples

Some examples from S_{4} the set of permutations of four objects:

- $(12)(123)=(23)$
- $(14)(13)(12)=(1234)$
- $(123)(12)=(13)$
- $(123)(345)=(12345)$
- $(12)(34)=(34)(12)$
- $(12)(23)(34)=(1234)$
- $(145)(123)=(12345)$
- $(15)(245)(12)=(14)(25)$
- $(12)(13)(14)=(1432)$
- $(43)(251)(145)=(134)(25)$

Disjoint Cycles

Theorem

Every permutation can be written as a product of disjoint cycles.

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Disjoint Cycles

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma=(43)(251)(145)$ and $a_{1}=1$:
So we get

$$
\begin{aligned}
(43)(251)(145) & =\left(a_{1}\right. \\
& =(1
\end{aligned}
$$

Disjoint Cycles

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma=(43)(251)(145)$ and $a_{1}=1$:

- $a_{2}=\sigma\left(a_{1}\right)=\sigma(1)=3$

So we get

$$
\begin{aligned}
(43)(251)(145) & =\left(a_{1} a_{2}\right. \\
& =(13
\end{aligned}
$$

Disjoint Cycles

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma=(43)(251)(145)$ and $a_{1}=1$:

- $a_{3}=\sigma\left(a_{2}\right)=\sigma(3)=4$

So we get

$$
\begin{aligned}
(43)(251)(145) & =\left(a_{1} a_{2} a_{3}\right. \\
& =(134
\end{aligned}
$$

Disjoint Cycles

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma=(43)(251)(145)$ and $a_{1}=1$:

- $\sigma\left(a_{3}\right)=\sigma(4)=1$

So we get

$$
\begin{aligned}
(43)(251)(145) & =\left(a_{1} a_{2} a_{3}\right) \\
& =(134)
\end{aligned}
$$

Disjoint Cycles

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma=(43)(251)(145)$ and $a_{1}=1$:

- $a_{4}=2$

So we get

$$
\begin{aligned}
(43)(251)(145) & =\left(a_{1} a_{2} a_{3}\right)\left(a_{4}\right. \\
& =(134)(2
\end{aligned}
$$

Disjoint Cycles

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma=(43)(251)(145)$ and $a_{1}=1$:

- $a_{5}=\sigma\left(a_{4}\right)=\sigma(2)=5$

So we get

$$
\begin{aligned}
(43)(251)(145) & =\left(a_{1} a_{2} a_{3}\right)\left(a_{4} a_{5}\right. \\
& =(134)(25
\end{aligned}
$$

Disjoint Cycles

Proof.

Given a permutation $\sigma \in S_{n}$ of the values $1,2,3, \ldots, n$, let $a_{1}=1$, then for all i

- if $\sigma\left(a_{i}\right) \neq a_{j}$, for $j \leq i$: let $a_{i+1}=\sigma\left(a_{i}\right)$ be the next element in the current cycle
- else: close the current cycle, let a_{i+1} be an element not already in a cycle

Repeat this until all the values $1,2,3, \ldots, n$ are used. The iterative definition insures that any new cycles will be equal or are disjoint. Since the new cycles are defined using σ it is the same permutation.

Let $\sigma=(43)(251)(145)$ and $a_{1}=1$:

- $\sigma\left(a_{5}\right)=\sigma(5)=2$

So we get

$$
\begin{aligned}
(43)(251)(145) & =\left(a_{1} a_{2} a_{3}\right)\left(a_{4} a_{5}\right) \\
& =(134)(25)
\end{aligned}
$$

2-Cycles

Theorem

Every permutation can be written as a product of 2-cycles.

Proof.

Suppose that $\sigma=\left(a_{1} a_{2} a_{3} \cdots a_{k}\right)$, then it can be "easily" checked that σ may be written in either of the following ways:

- $\sigma=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right)\left(a_{3} a_{4}\right) \cdots\left(a_{k-2} a_{k-1}\right)\left(a_{k-1} a_{k}\right)$ or
- $\sigma=\left(a_{1} a_{k}\right)\left(a_{1} a_{k-1}\right) \cdots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)$.

These two representations may be connected with the observation that:

$$
\left(a_{i} a_{j}\right)=\left(a_{i} a_{k}\right)\left(a_{k} a_{j}\right)\left(a_{i} a_{k}\right)
$$

e.g. $(14)=(13)(34)(13)$.

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

$$
(123)(45)(13)=(12)(23)(45)(13)
$$

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

$$
\begin{aligned}
(123)(45)(13) & =(12)(23)(45)(13) \\
& =(12)(23)(13)(45)
\end{aligned}
$$

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

$$
\begin{aligned}
(123)(45)(13) & =(12)(23)(45)(13) \\
& =(12)(23)(13)(45) \\
& =(12)(13)(12)(13)(13)(45)
\end{aligned}
$$

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

$$
\begin{aligned}
(123)(45)(13) & =(12)(23)(45)(13) \\
& =(12)(23)(13)(45) \\
& =(12)(13)(12)(13)(13)(45) \\
& =(12)(13)(12)(45)
\end{aligned}
$$

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

$$
\begin{aligned}
(123)(45)(13) & =(12)(23)(45)(13) \\
& =(12)(23)(13)(45) \\
& =(12)(13)(12)(13)(13)(45) \\
& =(12)(13)(12)(45) \\
& =(12)(12)(23)(12)(12)(45)
\end{aligned}
$$

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

$$
\begin{aligned}
(123)(45)(13) & =(12)(23)(45)(13) \\
& =(12)(23)(13)(45) \\
& =(12)(13)(12)(13)(13)(45) \\
& =(12)(13)(12)(45) \\
& =(12)(12)(23)(12)(12)(45) \\
& =(23)(12)(12)(45)
\end{aligned}
$$

Cycle Notation: A Useful Example

Shuffling 2-cycles to move a number left:

$$
\begin{aligned}
(123)(45)(13) & =(12)(23)(45)(13) \\
& =(12)(23)(13)(45) \\
& =(12)(13)(12)(13)(13)(45) \\
& =(12)(13)(12)(45) \\
& =(12)(12)(23)(12)(12)(45) \\
& =(23)(12)(12)(45) \\
& =(23)(45)
\end{aligned}
$$

Cycle Notation: Some Key Observations

- $(a c)=(a b)(b c)(a b)$

Cycle Notation: Some Key Observations

- $(a c)=(a b)(b c)(a b)$
- $(a c)(a c)=e$

Cycle Notation: Some Key Observations

- $(a c)=(a b)(b c)(a b)$
- $(a c)(a c)=e$
- $(a b)(c d)=(c d)(a b)$

Cycle Notation: Some Key Observations

- $(a c)=(a b)(b c)(a b)$
- $(a c)(a c)=e$
- $(a b)(c d)=(c d)(a b)$
- $(a b)(a c)=(a b)(a b)(b c)(a b)=(b c)(a b)$

Cycle Notation: Some Key Observations

- $(a c)=(a b)(b c)(a b)$
- $(a c)(a c)=e$
- $(a b)(c d)=(c d)(a b)$
- $(a b)(a c)=(a b)(a b)(b c)(a b)=(b c)(a b)$
- $(a c)(b c)=(b c)(a b)(b c)(b c)=(b c)(a b)$

Even and Odd Permutations

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Even and Odd Permutations

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Theorem

When written as a product of 2-cycles, every permutation is always either a product of an even number or of an odd number of 2-cycles, but not both.

Even and Odd Permutations

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Theorem

When written as a product of 2-cycles, every permutation is always either a product of an even number or of an odd number of 2-cycles, but not both.

Theorem

The set of all even permutations, A_{n} (the alternating group), is a subgroup of S_{n}.

Even and Odd Permutations

Lemma

Whenever it is written as a product of 2-cycles, the identity permutation is always a product of an even number of 2-cycles.

Theorem

When written as a product of 2-cycles, every permutation is always either a product of an even number or of an odd number of 2-cycles, but not both.

Theorem

The set of all even permutations, A_{n} (the alternating group), is a subgroup of S_{n}. (Which is proved with the 2-Step Subgroup Test.)

Groups and Subgroups

Dr. Chuck Rocca

WESTERN CONNECTICUT STATE UNIVERSITY
MACRICOSTAS
SCHOOL OF ARTS 8 SCIENCES

C. F. Rocca Jr. (WCSU)

Groups and Subgroups
$41 / 41$

