Theorem 1 If $p(z) \in \mathbb{C}[z]$ of degree $n \ge 1$ then it has a root in \mathbb{C} .

Proof: If the constant term of p(z) is zero then 0 is the desired root and we are done. If p(z) is not monic then we may divide it by the leading coefficient to get a monic polynomial with the same roots as p(z). So, suppose that

$$p(z) = z^{n} + a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_{1}z + a_{0} \in \mathbb{C}[z]$$

is a monic polynomial of degree $n \ge 1$ with a non-zero constant term. By the triangle inequality we know

$$|p(z)| \ge |z^{n}| - |a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_{1}z + a_{0}|.$$

Now

$$\lim_{|z| \to \infty} \frac{|z^n|}{|z^n|} - \frac{|a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_1z + a_0|}{|z^n|} = 1$$

and so

$$\lim_{|z| \to \infty} |z^n| - |a_{n-1}z^{n-1} + a_{n-2}z^{n-2} + \dots + a_1z + a_0| = \infty.$$

Therefore

$$\lim_{|z|\to\infty} |p(z)| = \infty^1$$

and given any real number Q > 0 there exists a real number R > 0 such that if |z| > R then |p(z)| > Q. Let us choose $Q_0 = 1 + |a_0|$ and let R_0 be the corresponding R value. If we let $D_{R_0} = \{z : |z| \le R_0\}$ then since D_{R_0} is closed and bounded |p(z)| achieves a minimum on this set. That is $\exists z_0 \in D_{R_0}$ such that $|p(z_0)| \le |p(z)| \ \forall z \in D_{R_0}$. Since $0 \in D_{R_0}$ this implies that $|p(z_0)| \le |p(0)| = |a_0|$. However $|p(z)| > 1 + |a_0|$ for all $z \notin D_{R_0}$, thus $|p(z_0)|$ is a global minimum.²

Next let

$$f(z) = p(z + z_0) = z^n + b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \dots + b_1z + b_0$$

so that |f(z)| will have a global minimum at $z = 0.^3$ If f(0) = 0 then we are done, so let's suppose that it does not, that is assume that $f(0) = b_0 \neq 0$. Now we define a new function

$$g(z) = \frac{1}{b_0}f(z) = c_n z^n + c_{n-1} z^{n-1} + c_{n-2} z^{n-2} + \dots + c_1 z + 1$$

¹Why do these limits follow one from another?

²How do we know that $|p(z_0)| \leq |p(z)| \ \forall z \in \mathbb{C}$?

³Why is the minimum now at zero and how do we know that the minimum did not change when we added the z_0 inside the parentheses?

where $c_i = b_i/b_0$. Thus g(z) achieves a minimum value of 1 at z = 0. Now suppose that $k \in \mathbb{Z}^+$ is the least integer such that $c_k \neq 0$, i.e.

$$c_i = 0, \ \forall 0 < i < k.$$

Then we can define $r = \sqrt[k]{\frac{-1}{c_k}}$ and

$$h(w) = g(rw) \tag{1}$$

$$= c_n (rw)^n + \dots + c_{k+1} (rw)^{k+1} + c_k (rw)^k + 1$$
(2)

$$= 1 - w^{k} + w^{k+1}(c_{k+1}r^{k+1} + \dots + c_{n}r^{n}w^{n-k-1})$$
(3)

$$= 1 - w^{k} + w^{k+1}m(w)$$
(4)

So that |h(w)| has the same minimum as |g(z)|.⁴ And, if we assume that 0 < w < 1 is real then by the triangle inequality we can conclude that

$$|h(w)| \le 1 - w^k (1 - w|m(w)|).^5$$

Now since $m(w)^6$ is a polynomial we know that $\lim_{w\to 0} w |m(w)| = 0$. Therefore, for a sufficiently small 0 < w < 1, say w_0 , we know that $0 < w_0 m |(w_0)| < 1$ so that $0 < 1 - w_0 |m(w_0)| < 1$ and thus $0 < 1 - w_0^k (1 - w_0 |m(w_0)|) < 1$. However this implies that $|h(w_0)| < 1$ which is a contradiction.⁷ Thus we may conclude that $p(z_0) = f(0) = 0^8$ and so p(z) has a root in \mathbb{C} . \Box

⁵What string of equalities or inequalities tells us that this is true?

⁴Why should h(w) have the same minimum value?

⁶What is m(w) equal to?

⁷Why is this a contradiction?

⁸Why does this follow from our contradiction?