Theorem 1 If $p(z) \in \mathbb{C}[z]$ of degree $n \geq 1$ then it has a root in \mathbb{C}.
Proof: If the constant term of $p(z)$ is zero then 0 is the desired root and we are done. If $p(z)$ is not monic then we may divide it by the leading coefficient to get a monic polynomial with the same roots as $p(z)$. So, suppose that

$$
p(z)=z^{n}+a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\cdots+a_{1} z+a_{0} \in \mathbb{C}[z]
$$

is a monic polynomial of degree $n \geq 1$ with a non-zero constant term. By the triangle inequality we know

$$
|p(z)| \geq\left|z^{n}\right|-\left|a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\cdots+a_{1} z+a_{0}\right| .
$$

Now

$$
\lim _{|z| \rightarrow \infty} \frac{\left|z^{n}\right|}{\left|z^{n}\right|}-\frac{\left|a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\cdots+a_{1} z+a_{0}\right|}{\left|z^{n}\right|}=1
$$

and so

$$
\lim _{|z| \rightarrow \infty}\left|z^{n}\right|-\left|a_{n-1} z^{n-1}+a_{n-2} z^{n-2}+\cdots+a_{1} z+a_{0}\right|=\infty .
$$

Therefore

$$
\lim _{|z| \rightarrow \infty}|p(z)|=\infty^{1}
$$

and given any real number $Q>0$ there exists a real number $R>0$ such that if $|z|>R$ then $|p(z)|>Q$. Let us choose $Q_{0}=1+\left|a_{0}\right|$ and let R_{0} be the corresponding R value. If we let $D_{R_{0}}=\left\{z:|z| \leq R_{0}\right\}$ then since $D_{R_{0}}$ is closed and bounded $|p(z)|$ achieves a minimum on this set. That is $\exists z_{0} \in D_{R_{0}}$ such that $\left|p\left(z_{0}\right)\right| \leq|p(z)| \forall z \in D_{R_{0}}$. Since $0 \in D_{R_{0}}$ this implies that $\left|p\left(z_{0}\right)\right| \leq|p(0)|=\left|a_{0}\right|$. However $|p(z)|>1+\left|a_{0}\right|$ for all $z \notin D_{R_{0}}$, thus $\left|p\left(z_{0}\right)\right|$ is a global minimum. ${ }^{2}$

Next let

$$
f(z)=p\left(z+z_{0}\right)=z^{n}+b_{n-1} z^{n-1}+b_{n-2} z^{n-2}+\cdots+b_{1} z+b_{0}
$$

so that $|f(z)|$ will have a global minimum at $z=0 .{ }^{3}$ If $f(0)=0$ then we are done, so let's suppose that it does not, that is assume that $f(0)=b_{0} \neq 0$. Now we define a new function

$$
g(z)=\frac{1}{b_{0}} f(z)=c_{n} z^{n}+c_{n-1} z^{n-1}+c_{n-2} z^{n-2}+\cdots+c_{1} z+1
$$

[^0]where $c_{i}=b_{i} / b_{0}$. Thus $g(z)$ achieves a minimum value of 1 at $z=0$. Now suppose that $k \in \mathbb{Z}^{+}$is the least integer such that $c_{k} \neq 0$, i.e.
$$
c_{i}=0, \forall 0<i<k .
$$

Then we can define $r=\sqrt[k]{\frac{-1}{c_{k}}}$ and

$$
\begin{align*}
h(w) & =g(r w) \tag{1}\\
& =c_{n}(r w)^{n}+\cdots+c_{k+1}(r w)^{k+1}+c_{k}(r w)^{k}+1 \tag{2}\\
& =1-w^{k}+w^{k+1}\left(c_{k+1} r^{k+1}+\cdots+c_{n} r^{n} w^{n-k-1}\right) \tag{3}\\
& =1-w^{k}+w^{k+1} m(w) \tag{4}
\end{align*}
$$

So that $|h(w)|$ has the same minimum as $|g(z)|{ }^{4}$ And, if we assume that $0<w<1$ is real then by the triangle inequality we can conclude that

$$
|h(w)| \leq 1-w^{k}(1-w|m(w)|) \cdot{ }^{5}
$$

Now since $m(w)^{6}$ is a polynomial we know that $\lim _{w \rightarrow 0} w|m(w)|=0$. Therefore, for a sufficiently small $0<w<1$, say w_{0}, we know that $0<w_{0} m\left|\left(w_{0}\right)\right|<1$ so that $0<1-w_{0}\left|m\left(w_{0}\right)\right|<1$ and thus $0<1-w_{0}^{k}\left(1-w_{0}\left|m\left(w_{0}\right)\right|\right)<1$. However this implies that $\left|h\left(w_{0}\right)\right|<1$ which is a contradiction. ${ }^{7}$ Thus we may conclude that $p\left(z_{0}\right)=f(0)=0^{8}$ and so $p(z)$ has a root in \mathbb{C}.

[^1]
[^0]: ${ }^{1}$ Why do these limits follow one from another?
 ${ }^{2}$ How do we know that $\left|p\left(z_{0}\right)\right| \leq|p(z)| \forall z \in \mathbb{C}$?
 ${ }^{3}$ Why is the minimum now at zero and how do we know that the minimum did not change when we added the z_{0} inside the parentheses?

[^1]: ${ }^{4}$ Why should $h(w)$ have the same minimum value?
 ${ }^{5}$ What string of equalities or inequalities tells us that this is true?
 ${ }^{6}$ What is $m(w)$ equal to?
 ${ }^{7}$ Why is this a contradiction?
 ${ }^{8}$ Why does this follow from our contradiction?

