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Vertices and Edges

Vertices and Edges

Lemma
Trees with two or more vertices has a vertex of degree 1.

Theorem
A tree with n vertices has exactly n − 1 edges.

Theorem
A connected graph with n vertices and n − 1 edges is a tree.

Theorem
A graph with at least as many edges as vertices has a circuit.
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Vertices and Edges

n − 1 Edges in a Tree
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“Obvious” if there are just two
vertices.

By previous lemma there is at least
1 leaf
Use induction with the subgraph
not containing the leaf
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Binary Trees
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Binary Trees

Complete Binary Tree

A full binary tree in which every leaf is at the same height.
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Binary Trees

Theorems on Binary Trees

Theorem
A full binary tree with k internal vertices has 2k + 1 total vertices and
k + 1 leaves.

Theorem
Given a binary tree with height h and t leaves,

t ≤ 2h and log2(t) ≤ h.

Corollary
A complete binary tree of height h has exactly t = 2h leaves.
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Binary Trees

Full Trees and Vertices

Root
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All internal vertices have 2
children, 2k children.

Only one vertex has no parent,
Root.
Total Vertices = 2k + 1.
Leaves aren’t internal,
Leaves = 2k + 1 − k = k + 1.
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Binary Trees

Leaves and Height

Root h = 0 ⇒ 2h = 20 = 1 ≥ t

h = k + 1 and Root has one
child
h = k + 1 and Root has two
children
t ≤ 2h implies log2(t) ≤ h
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Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Spanning Tree Definition and Examples

Root

a

d

j

e

m

b

f

c

g

l k

h i

C. F. Rocca Jr. (WCSU) Trees 20 / 26



Spanning Trees

Kruskal’s Minimal Tree Algorithm

NY ALB

PHL

DC BAL BOS
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1760

82 12

75

15 17

10

×
×

×

×

×

Find the unused edge with the
lowest value
If it doesn’t create a circuit add
it to the tree
Repeat until there are n − 1
edges
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Spanning Trees

Prim’s Minimal Tree Algorithm
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Pick a starting vertex to add to
the tree
Add the edge that has least
weight and connects to exactly
one vertex already in the tree
Add the vertex on the other end
of the edge to the tree
Repeat n − 1 times

C. F. Rocca Jr. (WCSU) Trees 22 / 26



Spanning Trees

Prim’s Minimal Tree Algorithm

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

×
×

×

×

×

Pick a starting vertex to add to
the tree
Add the edge that has least
weight and connects to exactly
one vertex already in the tree
Add the vertex on the other end
of the edge to the tree
Repeat n − 1 times

C. F. Rocca Jr. (WCSU) Trees 22 / 26



Spanning Trees

Prim’s Minimal Tree Algorithm

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

×
×

×

×

×

Pick a starting vertex to add to
the tree
Add the edge that has least
weight and connects to exactly
one vertex already in the tree
Add the vertex on the other end
of the edge to the tree
Repeat n − 1 times

C. F. Rocca Jr. (WCSU) Trees 22 / 26



Spanning Trees

Prim’s Minimal Tree Algorithm

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

×
×

×

×

×

Pick a starting vertex to add to
the tree
Add the edge that has least
weight and connects to exactly
one vertex already in the tree
Add the vertex on the other end
of the edge to the tree
Repeat n − 1 times

C. F. Rocca Jr. (WCSU) Trees 22 / 26



Spanning Trees

Prim’s Minimal Tree Algorithm

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

×
×

×

×

×

Pick a starting vertex to add to
the tree
Add the edge that has least
weight and connects to exactly
one vertex already in the tree
Add the vertex on the other end
of the edge to the tree
Repeat n − 1 times

C. F. Rocca Jr. (WCSU) Trees 22 / 26



Spanning Trees

Prim’s Minimal Tree Algorithm

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

×
×

×

×

×

Pick a starting vertex to add to
the tree
Add the edge that has least
weight and connects to exactly
one vertex already in the tree
Add the vertex on the other end
of the edge to the tree
Repeat n − 1 times

C. F. Rocca Jr. (WCSU) Trees 22 / 26



Spanning Trees

Prim’s Minimal Tree Algorithm

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

×
×

×

×

×

Pick a starting vertex to add to
the tree
Add the edge that has least
weight and connects to exactly
one vertex already in the tree
Add the vertex on the other end
of the edge to the tree
Repeat n − 1 times

C. F. Rocca Jr. (WCSU) Trees 22 / 26



Spanning Trees

Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

Round 1
v = BAL
F = {DC ,PHL,NY }
City Old Label New Label
ALB (∞,−) (∞,−)
BAL (0,−) (0,−)
BOS (∞,−) (∞,−)
DC (∞,−) (10,BAL)
NY (∞,−) (82,BAL)
PHL (∞,−) (17,BAL)

L(BOS) = (49,NY )← L(NY ) = (34,PHL)← L(PHL) = (17,BAL)

C. F. Rocca Jr. (WCSU) Trees 23 / 26



Spanning Trees

Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

Round 2
v = DC
F = {PHL,NY ,BOS}
City Old Label New Label
ALB (∞,−) (∞,−)
BAL (0,−) (0,−)
BOS (∞,−) (85,DC)
DC (10,BAL) (10,BAL)
NY (82,BAL) (70,DC)
PHL (17,BAL) (17,BAL)

L(BOS) = (49,NY )← L(NY ) = (34,PHL)← L(PHL) = (17,BAL)

C. F. Rocca Jr. (WCSU) Trees 23 / 26



Spanning Trees

Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY ALB

PHL

DC BAL BOS

10

15

1760

82 12

75

15 17

10

Round 3
v = PHL
F = {NY ,BOS}
City Old Label New Label
ALB (∞,−) (∞,−)
BAL (0,−) (0,−)
BOS (85,DC) (85,DC)
DC (10,BAL) (10,BAL)
NY (70,DC) (34,PHL)
PHL (17,BAL) (17,BAL)

L(BOS) = (49,NY )← L(NY ) = (34,PHL)← L(PHL) = (17,BAL)

C. F. Rocca Jr. (WCSU) Trees 23 / 26



Spanning Trees

Dijkstra’s “Shortest” Path Algorithm
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Spanning Trees

Dijkstra’s “Shortest” Path Algorithm

Start with vertex v at the start point

Update the label values for vertices
adjacent to v
Update the fringe F by removing v and
adding vertices adjacent to v
Update v to be the vertex in F with the
lowest label value
Add the new v to the tree along with
the edge that let it achieve its minimal
label value
Repeat until you reach the destination
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One More Example

1 2 4

1 2 1 2

1 41

1

1

4

a

b c d

e f g h

ij
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Trees

Dr. Chuck Rocca
roccac@wcsu.edu
http://sites.wcsu.edu/roccac
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