 CF Rocadr (WGSU) Tress

Dr. Chuck Rocca
roccac@Qwcsu.edu

http://sites.wcsu.edu/roccac

— ey
WESTERN
CONNECTICUT
STATE UNIVERSITY
MACRICOSTAS

SCHOOL OF ARTS
& SCIENCES

o =) = = E DA

roccac@wcsu.edu
http://sites.wcsu.edu/roccac

o TreeTeminoory [
Table of Contents

@ Tree Terminology

Tree Terminology

Tree Terminology

~ C.F.Roccalr. (WCSU) iz

Root

Tree Terminology

L\

Root

+—— Branch/Internal Vertex

h

Trees

Tree Terminology

Root

+—— Branch/Internal Vertex

N

h <— Leaf/Terminal Vertex

Trees

Tree Terminology

/)
i)]

Root

+—— Branch/Internal Vertex

N

h <— Leaf/Terminal Vertex

Trees

Tree Terminology

Child Parent/Ancestor

Root

+—— Branch/Internal Vertex

w1 N

e f g h <— Leaf/Terminal Vertex

~ C.F.Roccalr. (WCSU) Trees

Tree Terminology

Child Parent/Ancestor

Root

b c +—— Branch/Internal Vertex
Height / T\

e f g h <— Leaf/Terminal Vertex

I Descendant

~ C.F.Roccalr. (WCSU) iz

Tree Terminology

Child Parent/Ancestor

Root

b c +—— Branch/Internal Vertex
Height / T\

e f g h <— Leaf/Terminal Vertex

[Descendant

~ C.F.Roccalr. (WCSU) iz

o venicssand Edpes [
Table of Contents

© Vertices and Edges

Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. \

o =) = = E DA

 CF Rocadr (WGSU) Trees

e B
Degree 1 Vertex

/ a\ @ pick a vertex v
b J
/N k
/NN
f i I
/\
g h

vV —

c
|
d

e B
Degree 1 Vertex

@ pick a vertex v

/ a_ @ while deg(v) > 1:
b J
/N k
/NN
f i |
/ N\
g h

vV —

c
|
d

~ C.F.Roccalr. (WCSU) Trees

e B
Degree 1 Vertex

a @ pick a vertex v
\ e while deg(v) > 1:
— b J @ move to an un-visited vertex

e B
Degree 1 Vertex

@ pick a vertex v

— a
/ \ e while deg(v) > 1:
V—b J @ move to an un-visited vertex

/ \ ‘ e callit v

C e k
/NN
d f i |

/\

g h

e B
Degree 1 Vertex

v —a @ pick a vertex v

/ \ e while deg(v) > 1:
b J @ move to an un-visited vertex
/ \ ‘ e callit v

C e k
/NN
d f i |

/\

g h
[m] = = =

e B
Degree 1 Vertex

@ pick a vertex v

/ \ @ while deg(v) > 1:

j Vv e move to an un-visited vertex
-

\/\\

d

/\
& b

x — .

~ C.F.Roccalr. (WCSU) Trees

e B
Degree 1 Vertex

@ pick a vertex v

a
/ \ e while deg(v) > 1:
b :

J @ move to an un-visited vertex
/ \ ‘ e callit v
C e k < v
/NN
d f i | <
/\
g h
[m] = = =

e B
Degree 1 Vertex

@ pick a vertex v

a
/ \ e while deg(v) > 1:
b J

e move to an un-visited vertex
/ \ ‘ e callitv
C e k
/NN
d f i | <
/\
g h

%4

Degree 1 Vertex

@ pick a vertex v

a
/ \ e while deg(v) > 1:
b]

e move to an un-visited vertex

C/ \ | o callitv

€ k @ Terminates as long as there are
/ \ \ no circuits and the graph is
f i | <

v finite.
/\
g h

d

e B
Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. I

A tree with n vertices has exactly n — 1 edges.

&

 CF Rocadr (WGSU) Tress

e B
n — 1 Edges in a Tree

ffffffffffffffffff

a ! @ “Obvious" if there are just two

/ \ ! vertices.

,,,,,,,,,,,,,,,,,,

e B
n — 1 Edges in a Tree

ffffffffffffffffff

1 a : @ “Obvious” if there are just two
1 / \ 1 vertices.
b X @ By previous lemma there is at least
| / \ /| 1 leaf
e e k |
A /NN
i f }
BRVARN
g h ‘

~ C.F.Roccalr. (WCSU) Trees

e B
n — 1 Edges in a Tree

ffffffffffffffffff

@ "Obvious" if there are just two

3 / \ i vertices.
3 b] 3 @ By previous lemma there is at least
-/ N\ / 1 leaf
i ¢ € ko @ Use induction with the subgraph
_/“/ / \ \ i not containing the leaf
do f ¥
g/ \h 1

Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. I
A tree with n vertices has exactly n — 1 edges. I
A connected graph with n vertices and n — 1 edges is a tree. I

 CF Rocadr (WGSU) Tress

e B
Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. \
A tree with n vertices has exactly n — 1 edges. \
A connected graph with n vertices and n — 1 edges is a tree. \

A graph with at least as many edges as vertices has a circuit.

 CF Rocadr (WGSU) Tress

- =nyTes
Table of Contents

© Binary Trees

o e
Binary Tree

Root

N
II/ \I I/ \
\ \

lr rlr

o e
Binary Tree

Root
I/ \ r
II/ \l /\

rl (rr)Right Child of r

\ \

[lr rlr

~ C.F.Roccalr. (WCSU) Trees

o e
Binary Tree

Root

Left Child of Root /| ‘
ANVAN
o d) Right Child of r

\ \

[lr rlr

~ C.F.Roccalr. (WCSU) Trees

o e
Binary Tree

Root

N,
/ \ / \
! rl re
'\\ ;' \
\\I\I_r// rlr
Left Subtree

o e
Binary Tree

Root

N
N /\

'II r‘_

! \ / \ \
\ / 1

N - .

s /’ rIr -

Left Subtree Right Subtree

o e
Full Binary Tree

Every parent has two children.

Root

N
/\ /\

/\ /\

I [r rll rlr

o e
Complete Binary Tree

A full binary tree in which every leaf is at the same height.

Root

I/ \r
II/ \Ir rl/ \rr
II/ \” /\ /\ /\

[r Irl Irr rll Ir rrl ree

o e
Theorems on Binary Trees

k + 1 leaves.

A full binary tree with k internal vertices has 2k + 1 total vertices and

=
Trees

Full Trees and Vertices

,,,,,,,

‘ ! @ All internal vertices have 2

77777777 / :7’&”””” children, 2k children.

- ey Tee [
Full Trees and Vertices

,,,,,,,

" Root | @ All internal vertices have 2

77777777 / ::X”””” children, 2k children.

@ Only one vertex has no parent,
Root.

- ey Tee [
Full Trees and Vertices

,,,,,,,

" Root | @ All internal vertices have 2

77777777 / ::X”””” children, 2k children.

@ Only one vertex has no parent,
Root.

3 Il Ir rl rr ! @ Total Vertices = 2k + 1.

Full Trees and Vertices

,,,,,,,

‘ ! @ All internal vertices have 2

77777777 / ::X”””” children, 2k children.

@ Only one vertex has no parent,

| | r 3

i / \ / \ ! Root.

! Il Ir rl rr 3 o Total Vertices = 2k + 1.

3 / \ / \ l @ Leaves aren't internal,

| 1 llr rrl rer 3 Leaves =2k +1—k=k+ 1.

D

Dac

[} [=

Theorems on Binary Trees

A full binary tree with k internal vertices has 2k + 1 total vertices and
k + 1 leaves.

Given a binary tree with height h and t leaves,

t <2/ and log,(t) < h.

- =nyTes
Leaves and Height

R<;ot e h=0=2"=20=1>1¢

7777777

~ C.F.Roccalr. (WCSU) iz

o e
Leaves and Height

" Root oh=0=2"=20=1>¢
PR / ’’’’’’’ @ h=k +1 and Root has one
| | child
l / N\ k1 _ k
o 2 =22
/N > 2441
L[[T >t +1
,,,,,,,,,,, ,

 CF Rocadr (WGSU) Tress

o e
Leaves and Height

,,,,,,,

" Root o h=0=2"=20=1>1¢
‘,,,,,,,,/"/Z”"X 77777777 @ h=k+1 and Root has one
1 N | child
3 /\ | 3 /\ 1 @ h=k+1 and Root has two
} I Ir 3 ol re 3 children
I T A 26 =22
*********** B >t + t,

=t
[Op |00}
[OF (3
or «F =» «=» =

o e
Leaves and Height

,,,,,,,

" Root o h=0=2"=20=1>1¢
‘,,,,,,,,/"/Z”"X 77777777 @ h=k+ 1 and Root has one
l I L r 3 child
3 /\ 3 / \ : @ h=k+1 and Root has two
} I Ir 3 ol rr 3 children
i /\ : i / \ ! o t < 2N implies log,(t) < h
LI T (I

Theorems on Binary Trees

A full binary tree with k internal vertices has 2k + 1 total vertices and

k + 1 leaves.

Given a binary tree with height h and t leaves,

t < 2" and log,(t) < h.

A complete binary tree of height h has exactly t = 2" leaves.
[EI74E

Trees

o sening Trees
Table of Contents

@ Spanning Trees

Spanning Tree Definition and Examples

Root

ININ 70N
N

ANEN

J m

Spanning Tree Definition and Examples

Root

NN A7
N

NN

J m

Spanning Tree Definition and Examples

Root

NN 7N
N

NN

J m

Spanning Tree Definition and Examples

Root

NI A7
AN

ANEN

J m

Spanning Tree Definition and Examples

Root

NN 70
AN

ANEN

J m

Spanning Tree Definition and Examples

Root

NN 70
N

ANEN

J m

Spanning Tree Definition and Examples

Root

ANENPANN

d e f h

ANEN

J m I k

Spanning Tree Definition and Examples

Root

ANENPANN

d e f h

NN

J m I k

Spanning Tree Definition and Examples

Root

ANENPANN

d e f h

ANEN

J m I k

Spanning Tree Definition and Examples

Spanning Tree Definition and Examples

Kruskal's Minimal Tree Algorithm

NY—10 ALB @ Find the unused edge with the
/ \\ \ lowest value
PHL @ If it doesn't create a circuit add
N it to the tree
/15 17\ \ @ Repeat until there are n —1
DC 10 BAL BOS edges

~ C.F.Roccalr. (WCSU) Trees

Kruskal's Minimal Tree Algorithm

_— NYALB e Find the unused edge with the
60 17/ \ \ lowest value
pHL o s 1 ° .If it doesn't create a circuit add
N it to the tree
15 17 :
@ Repeat until there are n —1

e AN
DC BAL BOS edges

~ C.F.Roccalr. (WCSU) Trees

Kruskal's Minimal Tree Algorithm

\ lowest value

o If it doesn't create a circuit add
it to the tree

NY ALB @ Find the unused edge with the
—

17
e

/E

@ Repeat until there are n —1

e AN
DC BAL BO edges

Kruskal's Minimal Tree Algorithm

NY ALB @ Find the unused edge with the
o

lowest value

Y o If it doesn't create a circuit add
it to the tree
\ @ Repeat until there are n —1

DC BAL BO edges

Kruskal's Minimal Tree Algorithm

NYALB @ Find the unused edge with the

//GD/ \ lowest value
PHL 8 % ° .If it doesn’t create a circuit add
g AN it to the tree
X\ @ Repeat until there are n —1
be B edges

~ C.F.Roccalr. (WCSU) Trees

Kruskal's Minimal Tree Algorithm

/ NYALB @ Find the unused edge with the

\\ lowest value
PHL %)¢ o If it doesn't create a circuit add
U it to the tree
/69/ X\ \ \ @ Repeat until there are n —1
DC BAL BOS edges

Prim’'s Minimal Tree Algorithm

/ —10—ALB

BAL

\/

BOS

Trees

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

3

Prim’'s Minimal Tree Algorithm

/ @ Pick a starting vertex to add to
60 17/ the tree

@ Add the edge that has least

weight and connects to exactly
\ one vertex already in the tree

BAL BOS @ Add the vertex on the other end

\75/ of the edge to the tree

@ Repeat n — 1 times

3

Prim’'s Minimal Tree Algorithm

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

3

Prim’'s Minimal Tree Algorithm

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

3

Prim’'s Minimal Tree Algorithm

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

3

Prim’'s Minimal Tree Algorithm

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

3

Prim’'s Minimal Tree Algorithm

+

ey
OB N
ESCN

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

e e
Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY*lO ALB Round 1

v = BAL
\ F = {DC, PHL,NY}

15 12 City | Old Label | New Label
/ \ ‘ \/ ALB | (00, —) | (50,2)
BAL (a) (07_)
BOS BOS | (00,—) | (00,)
75 DC | (00,—) | (10, BAL)
NY | (c0,—) | (82, BAL)
PHL | (00, —) | (17, BAL)

Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY*lO ALB Round 2
v=DC
\ F = {PHL, NY, BOS}
82 15 City | Old Label | New Label
ALB | (oo, —) (00, —)
@ BOS BAL | (0,-) (0,-)
BOS | (o0, —) (85, DC)
DC (10 BAL) | (10,BAL)
NY | (82, BAL) | (70,DC)
PHL | (17, BAL) | (17, BAL)
(O |0
[OF D3,
= & = = =

Trees

Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY —10— ALB

\

Trees

Round 3
v = PHL
F = {NY,BOS}
City | Old Label | New Label
ALB | (oo, —) (00, —)
BAL | (0,-) (0,-)
BOS (85 DC) | (85,DC)
DC | (10,BAL) | (10, BAL)
NY | (70,DC) | (34, PHL)
PHL | (17, BAL) | (17, BAL)
EE
iz
=] (=) = E =

Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

10— ALB Round 4
v=NY
/GD/ F = {ALB, BOS}
5 City | Old Label | New Label
ALB | (oo, —) (44, NY)
BOS BAL | (0.-) | (0.-)
BOS (85 DC) | (49,NY)
DC | (10,BAL) | (10, BAL)
(
(

NY | (34, PHL) | (34, PHL)
PHL | (17, BAL) | (17, BAL)

Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

‘ Round 5
% v=ALB
% F = {BOS}
15 City | Old Label | New Label
\ / ALB | (44,NY) | (44,NY)
BOS BAL =) (0,-)
‘ BOS | (49, NY) | (49, NY)

(o,
(
DC | (10, BAL) | (10, BAL)
(
(

NY | (34, PHL) | (34, PHL)
PHL | (17, BAL) | (17, BAL)

Dijkstra’s “Shortest” Path Algorithm

5

U
@ w
~ =

L(BOS) = (49, NY) = L(NY) = (34, PHL) L(PHL) = (17, BAL) gy
% B,

)

2

Baltimore to Boston

.

Round 6

v = BOS

F={}
City | Old Label | New Label
ALB | (44,NY) | (44,NY)
BAL | (0,-) (0,-)
BOS | (49, NY) | (49,NY)
DC | (10,BAL) | (10, BAL)
NY | (34, PHL) | (34, PHL)
PHL | (17, BAL) | (17, BAL)

Trees

=] (=)

Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

Sl

Trees

Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the /abel values for vertices
adjacent to v

Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the label values for vertices
adjacent to v

o Update the fringe F by removing v and
adding vertices adjacent to v

/@ 82
~_

12

Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the label values for vertices
adjacent to v

@ Update the fringe F by removing v and
adding vertices adjacent to v

@ Update v to be the vertex in F with the
lowest label value

Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the label values for vertices
adjacent to v

@ Update the fringe F by removing v and

@ Add the new v to the tree along with
the edge that let it achieve its minimal
label value

jol

60/_
adding vertices adjacent to v @ 82
. . e
@ Update v to be the vertex in F with the 15 \GD\
lowest label value @ BAY (

75

Dijkstra’s “Shortest” Path Algorithm

Start with vertex v at the start point

Update the /abel values for vertices
adjacent to v

Update the fringe F by removing v and

5
adding vertices adjacent to v @ 8
. . Ve
Update v to be the vertex in F with the 15 \QD\
o

lowest label value

R

Add the new v to the tree along with
the edge that let it achieve its minimal
label value

Repeat until you reach the destination

One More Example

 CF Rocadr (WGSU) Tress

Dr. Chuck Rocca
roccac@Qwcsu.edu

http://sites.wcsu.edu/roccac

— ey
WESTERN
CONNECTICUT
STATE UNIVERSITY
MACRICOSTAS

SCHOOL OF ARTS
& SCIENCES

o =) = = E DA

roccac@wcsu.edu
http://sites.wcsu.edu/roccac

	Tree Terminology
	Vertices and Edges
	Binary Trees
	Spanning Trees

