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Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. \
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Degree 1 Vertex

/ a\ @ pick a vertex v
b J
/N k
/NN
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Degree 1 Vertex

@ pick a vertex v

/ a\_ @ while deg(v) > 1:
b J
/N k
/NN
f i |
/ N\
g h

vV —

c
|
d
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Degree 1 Vertex

a @ pick a vertex v
\ e while deg(v) > 1:
— b J @ move to an un-visited vertex
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Degree 1 Vertex

@ pick a vertex v

— a
/ \ e while deg(v) > 1:
V—b J @ move to an un-visited vertex

/ \ ‘ e callit v
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Degree 1 Vertex

v —a @ pick a vertex v

/ \ e while deg(v) > 1:
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Degree 1 Vertex

@ pick a vertex v

/ \ @ while deg(v) > 1:

j Vv e move to an un-visited vertex
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Degree 1 Vertex

@ pick a vertex v
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/ \ e while deg(v) > 1:
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Degree 1 Vertex

@ pick a vertex v

a
/ \ e while deg(v) > 1:
b J

e move to an un-visited vertex
/ \ ‘ e callitv
C e k
/NN
d f i | <
/\
g h
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Degree 1 Vertex

@ pick a vertex v

a
/ \ e while deg(v) > 1:
b ]

e move to an un-visited vertex

C/ \ | o callitv

€ k @ Terminates as long as there are
/ \ \ no circuits and the graph is
f i | <

v finite.
/\
g h

d
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Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. I

A tree with n vertices has exactly n — 1 edges.
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n — 1 Edges in a Tree

ffffffffffffffffff

a ! @ “Obvious" if there are just two

/ \ ! vertices.
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e B
n — 1 Edges in a Tree

ffffffffffffffffff

1 a : @ “Obvious” if there are just two
1 / \ 1 vertices.
b X @ By previous lemma there is at least
| / \ /| 1 leaf
e e k |
A /NN
i f }
BRVARN
g h ‘
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n — 1 Edges in a Tree

ffffffffffffffffff

@ "Obvious" if there are just two

3 / \ i vertices.
3 b ] 3 @ By previous lemma there is at least
-/ N\ / 1 leaf
i ¢ € ko @ Use induction with the subgraph
_/“/ / \ \ i not containing the leaf
do f ¥
g/ \h 1




Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. I
A tree with n vertices has exactly n — 1 edges. I
A connected graph with n vertices and n — 1 edges is a tree. I

 CF Rocadr (WGSU) Tress



e B
Vertices and Edges

Trees with two or more vertices has a vertex of degree 1. \
A tree with n vertices has exactly n — 1 edges. \
A connected graph with n vertices and n — 1 edges is a tree. \

A graph with at least as many edges as vertices has a circuit.
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Binary Tree
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Binary Tree
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Binary Tree
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Binary Tree

Root
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N /\
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Full Binary Tree

Every parent has two children.

Root

N
/\ /\

/\ /\

I [r rll rlr




o e
Complete Binary Tree

A full binary tree in which every leaf is at the same height.

Root

I/ \r
II/ \Ir rl/ \rr
II/ \” /\ /\ /\

[ r Irl Irr rll Ir rrl ree
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Theorems on Binary Trees

k + 1 leaves.

A full binary tree with k internal vertices has 2k + 1 total vertices and

=
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Full Trees and Vertices

,,,,,,,

‘ ! @ All internal vertices have 2

77777777 / :7’&”””” children, 2k children.
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Full Trees and Vertices

,,,,,,,

" Root | @ All internal vertices have 2

77777777 / ::X”””” children, 2k children.

@ Only one vertex has no parent,
Root.
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Full Trees and Vertices

,,,,,,,

" Root | @ All internal vertices have 2

77777777 / ::X”””” children, 2k children.

@ Only one vertex has no parent,
Root.

3 Il Ir rl rr ! @ Total Vertices = 2k + 1.




Full Trees and Vertices

,,,,,,,

‘ ! @ All internal vertices have 2

77777777 / ::X”””” children, 2k children.

@ Only one vertex has no parent,

| | r 3

i / \ / \ ! Root.

! Il Ir rl rr 3 o Total Vertices = 2k + 1.

3 / \ / \ l @ Leaves aren't internal,

| 1 llr rrl rer 3 Leaves =2k +1—k=k+ 1.

D
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Theorems on Binary Trees

A full binary tree with k internal vertices has 2k + 1 total vertices and
k + 1 leaves.

Given a binary tree with height h and t leaves,

t <2/ and log,(t) < h.
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R<;ot e h=0=2"=20=1>1¢
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Leaves and Height

" Root oh=0=2"=20=1>¢
PR / ’’’’’’’ @ h=k +1 and Root has one
| | child
l / N\ k1 _ k
o 2 =22
/N > 2441
L[ [T >t +1
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Leaves and Height

,,,,,,,

" Root o h=0=2"=20=1>1¢
‘,,,,,,,,/"/Z”"X 77777777 @ h=k+1 and Root has one
1 N | child
3 /\ | 3 /\ 1 @ h=k+1 and Root has two
} I Ir 3 ol re 3 children
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o e
Leaves and Height

,,,,,,,

" Root o h=0=2"=20=1>1¢
‘,,,,,,,,/"/Z”"X 77777777 @ h=k+ 1 and Root has one
l I L r 3 child
3 /\ 3 / \ : @ h=k+1 and Root has two
} I Ir 3 ol rr 3 children
i /\ : i / \ ! o t < 2N implies log,(t) < h
LI T (I




Theorems on Binary Trees

A full binary tree with k internal vertices has 2k + 1 total vertices and

k + 1 leaves.

Given a binary tree with height h and t leaves,

t < 2" and log,(t) < h.

A complete binary tree of height h has exactly t = 2" leaves.
[EI74E
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Spanning Tree Definition and Examples
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Kruskal's Minimal Tree Algorithm

NY—10 ALB @ Find the unused edge with the
/ \\ \ lowest value
PHL @ If it doesn't create a circuit add
N it to the tree
/15 17\ \ @ Repeat until there are n —1
DC 10 BAL BOS edges
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Kruskal's Minimal Tree Algorithm

_— NYALB e Find the unused edge with the
60 17/ \ \ lowest value
pHL o s 1 ° .If it doesn't create a circuit add
N it to the tree
15 17 :
@ Repeat until there are n —1

e AN
DC BAL BOS edges
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Kruskal's Minimal Tree Algorithm

\ lowest value

o If it doesn't create a circuit add
it to the tree

NY ALB @ Find the unused edge with the
—

17
e

/E

@ Repeat until there are n —1

e AN
DC BAL BO edges




Kruskal's Minimal Tree Algorithm

NY ALB @ Find the unused edge with the
o

lowest value

Y o If it doesn't create a circuit add
it to the tree
\ @ Repeat until there are n —1

DC BAL BO edges




Kruskal's Minimal Tree Algorithm

NYALB @ Find the unused edge with the

//GD/ \ lowest value
PHL 8 % ° .If it doesn’t create a circuit add
g AN it to the tree
X\ @ Repeat until there are n —1
be B edges
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Kruskal's Minimal Tree Algorithm

/ NYALB @ Find the unused edge with the

\\ lowest value
PHL % )¢ o If it doesn't create a circuit add
U it to the tree
/69/ X\ \ \ @ Repeat until there are n —1
DC BAL BOS edges




Prim’'s Minimal Tree Algorithm

/ —10—ALB

BAL

\/

BOS

Trees

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

3




Prim’'s Minimal Tree Algorithm

/ @ Pick a starting vertex to add to
60 17/ the tree

@ Add the edge that has least

weight and connects to exactly
\ one vertex already in the tree

BAL BOS @ Add the vertex on the other end

\75/ of the edge to the tree

@ Repeat n — 1 times

3
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the tree

@ Add the edge that has least
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one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times
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Prim’'s Minimal Tree Algorithm

@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times

3




Prim’'s Minimal Tree Algorithm

+

ey
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@ Pick a starting vertex to add to
the tree

@ Add the edge that has least
weight and connects to exactly
one vertex already in the tree

@ Add the vertex on the other end
of the edge to the tree

@ Repeat n — 1 times
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Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY*lO ALB Round 1

v = BAL
\ F = {DC, PHL,NY}

15 12 City | Old Label | New Label
/ \ ‘ \/ ALB | (00, —) | (50,2)
BAL (a ) (07_)
BOS  BOS | (00,—) | (00, )
75 DC | (00,—) | (10, BAL)
NY | (c0,—) | (82, BAL)
PHL | (00, —) | (17, BAL)




Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY*lO ALB Round 2
v=DC
\ F = {PHL, NY, BOS}
82 15 City | Old Label | New Label
ALB | (oo, —) (00, —)
@ BOS BAL | (0,-) (0,-)
BOS | (o0, —) (85, DC)
DC (10 BAL) | (10,BAL)
NY | (82, BAL) | (70,DC)
PHL | (17, BAL) | (17, BAL)
(O |0
[OF D3,
= & = = =
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Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

NY —10— ALB

\

Trees

Round 3
v = PHL
F = {NY,BOS}
City | Old Label | New Label
ALB | (oo, —) (00, —)
BAL | (0,-) (0,-)
BOS (85 DC) | (85,DC)
DC | (10,BAL) | (10, BAL)
NY | (70,DC) | (34, PHL)
PHL | (17, BAL) | (17, BAL)
EE
iz
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Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

10— ALB Round 4
v=NY
/GD/ F = {ALB, BOS}
5 City | Old Label | New Label
ALB | (oo, —) (44, NY)
BOS BAL | (0.-) | (0.-)
BOS (85 DC) | (49,NY)
DC | (10,BAL) | (10, BAL)
(
(

NY | (34, PHL) | (34, PHL)
PHL | (17, BAL) | (17, BAL)




Dijkstra’s “Shortest” Path Algorithm

Baltimore to Boston

‘ Round 5
% v=ALB
% F = {BOS}
15 City | Old Label | New Label
\ / ALB | (44,NY) | (44,NY)
BOS BAL =) (0,-)
‘ BOS | (49, NY) | (49, NY)

(o,
(
DC | (10, BAL) | (10, BAL)
(
(

NY | (34, PHL) | (34, PHL)
PHL | (17, BAL) | (17, BAL)




Dijkstra’s “Shortest” Path Algorithm

5

U
@ w
~ =

L(BOS) = (49, NY) = L(NY) = (34, PHL)  L(PHL) = (17, BAL) gy
% B,

)

2

Baltimore to Boston

.

Round 6

v = BOS

F={}
City | Old Label | New Label
ALB | (44,NY) | (44,NY)
BAL | (0,-) (0,-)
BOS | (49, NY) | (49,NY)
DC | (10,BAL) | (10, BAL)
NY | (34, PHL) | (34, PHL)
PHL | (17, BAL) | (17, BAL)

Trees

=] (=)




Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

Sl

Trees



Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the /abel values for vertices
adjacent to v




Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the label values for vertices
adjacent to v

o Update the fringe F by removing v and
adding vertices adjacent to v

/@ 82
~_

12




Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the label values for vertices
adjacent to v

@ Update the fringe F by removing v and
adding vertices adjacent to v

@ Update v to be the vertex in F with the
lowest label value




Dijkstra’s “Shortest” Path Algorithm

@ Start with vertex v at the start point

@ Update the label values for vertices
adjacent to v

@ Update the fringe F by removing v and

@ Add the new v to the tree along with
the edge that let it achieve its minimal
label value

jol

60/_
adding vertices adjacent to v @ 82
. . e
@ Update v to be the vertex in F with the 15 \GD\
lowest label value @ BAY (

75




Dijkstra’s “Shortest” Path Algorithm

Start with vertex v at the start point

Update the /abel values for vertices
adjacent to v

Update the fringe F by removing v and

5
adding vertices adjacent to v @ 8
. . Ve
Update v to be the vertex in F with the 15 \QD\
o

lowest label value

R

Add the new v to the tree along with
the edge that let it achieve its minimal
label value

Repeat until you reach the destination




One More Example
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