Trees

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

C. F. Rocca Jr. (WCSU)

1/26

Table of Contents

2 Vertices and Edges

3 Binary Trees

Ispanning Trees

590

▶ Ξ

(日)

Table of Contents

Tree Terminology

2 Vertices and Edges

3 Binary Trees

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1.

• pick a vertex v

- pick a vertex v
- while deg(v) > 1:

- pick a vertex v
- while deg(v) > 1:
 - move to an un-visited vertex

- pick a vertex v
- while deg(v) > 1:
 - move to an un-visited vertex
 - call it v

- pick a vertex v
- while deg(v) > 1:
 - move to an un-visited vertex
 - call it v

- pick a vertex v
- while deg(v) > 1:
 - move to an un-visited vertex
 - call it v

►

- pick a vertex v
- while deg(v) > 1:
 - move to an un-visited vertex
 - call it v

- pick a vertex v
- while deg(v) > 1:
 - move to an un-visited vertex
 - call it v

- pick a vertex v
- while deg(v) > 1:
 - move to an un-visited vertex
 - call it v
- Terminates as long as there are no circuits and the graph is finite.

Image: A = 1

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1.

Theorem

A tree with n vertices has exactly n - 1 edges.

Image: A matrix

< ∃ > < ∃

n-1 Edges in a Tree

• "Obvious" if there are just two vertices.

< □ > < 凸

•

n-1 Edges in a Tree

- "Obvious" if there are just two vertices.
- By previous lemma there is at least 1 leaf

Image: A = 1

n-1 Edges in a Tree

- "Obvious" if there are just two vertices.
- By previous lemma there is at least 1 leaf
- Use induction with the subgraph not containing the leaf

< □ ▶

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1.

Theorem

A tree with n vertices has exactly n - 1 edges.

Theorem

A connected graph with n vertices and n-1 edges is a tree.

Image: A matrix and a matrix

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1.

Theorem

A tree with n vertices has exactly n - 1 edges.

Theorem

A connected graph with n vertices and n-1 edges is a tree.

Theorem

A graph with at least as many edges as vertices has a circuit.

Table of Contents

Tree Terminology

Vertices and Edges

11/26

11/26

Full Binary Tree

Every parent has two children.

< □ > < 凸

•

Complete Binary Tree

A full binary tree in which every leaf is at the same height.

590

Image: Image:

Theorems on Binary Trees

Theorem

A full binary tree with k internal vertices has 2k + 1 total vertices and k + 1 leaves.

Image: A matrix and a matrix

4 ∃ ► 4

• All internal vertices have 2 children, 2k children.

Image: A matrix and a matrix

э.

- All internal vertices have 2 children, 2k children.
- Only one vertex has no parent, *Root*.

.

- All internal vertices have 2 children, 2k children.
- Only one vertex has no parent, *Root*.
- Total Vertices = 2k + 1.

.

- All internal vertices have 2 children, 2k children.
- Only one vertex has no parent, *Root*.
- Total Vertices = 2k + 1.
- Leaves aren't internal,
 Leaves = 2k + 1 k = k + 1.

Theorems on Binary Trees

Theorem

A full binary tree with k internal vertices has 2k + 1 total vertices and k + 1 leaves.

Theorem

Given a binary tree with height h and t leaves,

 $t \leq 2^h$ and $\log_2(t) \leq h$.

Image: A matrix and a matrix

∃ ▶ ∢

• $h = 0 \Rightarrow 2^h = 2^0 = 1 \ge t$

- $h = 0 \Rightarrow 2^{h} = 2^{0} = 1 \ge t$
- h = k + 1 and *Root* has one child

- $h = 0 \Rightarrow 2^{h} = 2^{0} = 1 \ge t$
- h = k + 1 and *Root* has one child
- h = k + 1 and *Root* has two children

Image: A matrix and a matrix

<- ≥ > < ≥

- $h = 0 \Rightarrow 2^h = 2^0 = 1 \ge t$
- h = k + 1 and *Root* has one child
- h = k + 1 and *Root* has two children
- $t \leq 2^h$ implies $\log_2(t) \leq h$

< □ ▶

▶ ∢ ∃

Theorems on Binary Trees

Theorem

A full binary tree with k internal vertices has 2k + 1 total vertices and k + 1 leaves.

Theorem

Given a binary tree with height h and t leaves,

$$t \leq 2^h$$
 and $\log_2(t) \leq h$.

Corollary

A complete binary tree of height h has exactly $t = 2^h$ leaves.

Table of Contents

Tree Terminology

Vertices and Edges

3 Binary Trees

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are *n* 1 edges

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are *n* 1 edges

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are *n* 1 edges

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are *n* 1 edges

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are *n* 1 edges

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are *n* 1 edges

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to *exactly* one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat n-1 times

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to *exactly* one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat n-1 times

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to *exactly* one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat n-1 times

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to *exactly* one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat n-1 times

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to *exactly* one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat n-1 times

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to *exactly* one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat n-1 times

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to *exactly* one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat n-1 times

Dijkstra's "Shortest" Path Algorithm

Baltimore to Boston

Round 1		
v = BAL		
$F = \{DC, PHL, NY\}$		
City	Old Label	New Label
ALB	$(\infty, -)$	$(\infty, -)$
BAL	(0, -)	(0, -)
BOS	$(\infty, -)$	$(\infty, -)$
DC	$(\infty, -)$	(10, <i>BAL</i>)
NY	$(\infty, -)$	(82, <i>BAL</i>)
PHL	$(\infty, -)$	(17, <i>BAL</i>)

∃ ▶ ∢
Baltimore to Boston

Round 2				
v = DC				
$F = \{PHL, NY, BOS\}$				
City	Old Label	New Label		
ALB	$(\infty, -)$	$(\infty, -)$		
BAL	(0, -)	(0, -)		
BOS	$(\infty, -)$	(85, <i>DC</i>)		
DC	(10, <i>BAL</i>)	(10, <i>BAL</i>)		
NY	(82, <i>BAL</i>)	(70, <i>DC</i>)		
PHL	(17, <i>BAL</i>)	(17, <i>BAL</i>)		

∃ ▶ ∢

Baltimore to Boston

Round 3				
v = PHL				
$F = \{NY, BOS\}$				
City	Old Label	New Label		
ALB	$(\infty, -)$	$(\infty, -)$		
BAL	(0, -)	(0, -)		
BOS	(85, <i>DC</i>)	(85, <i>DC</i>)		
DC	(10, <i>BAL</i>)	(10, <i>BAL</i>)		
NY	(70, <i>DC</i>)	(34, PHL)		
PHL	(17, <i>BAL</i>)	(17, <i>BAL</i>)		

4 ∃ ► 4

C. F. Rocca Jr. (WCSU)

23 / 26

Baltimore to Boston

Round 4				
v = NY				
$F = \{ALB, BOS\}$				
City	Old Label	New Label		
ALB	$(\infty, -)$	(44, <i>NY</i>)		
BAL	(0, -)	(0, -)		
BOS	(85, <i>DC</i>)	(49, <i>NY</i>)		
DC	(10, <i>BAL</i>)	(10, <i>BAL</i>)		
NY	(34, PHL)	(34, PHL)		
PHL	(17, <i>BAL</i>)	(17, <i>BAL</i>)		

∃ ▶ ∢

Baltimore to Boston

Round	5			
v = ALB				
$F = \{BOS\}$				
City	Old Label	New Label		
ALB	(44, <i>NY</i>)	(44, <i>NY</i>)		
BAL	(0, -)	(0, -)		
BOS	(49, <i>NY</i>)	(49, <i>NY</i>)		
DC	(10, <i>BAL</i>)	(10, <i>BAL</i>)		
NY	(34, PHL)	(34, PHL)		
PHL	(17, <i>BAL</i>)	(17, <i>BAL</i>)		

∃ ▶ ∢

Baltimore to Boston

Round 6 v = BOS $F = \{\}$ City Old Label New Label ALB (44, NY)(44, NY)(0, -)(0, -)BAL BOS (49, NY)(49, NY)DC (10, BAL)(10, BAL)NY (34, *PHL*) (34, PHL)(17, BAL)PHL (17, BAL)

• Start with vertex v at the start point

Image: A = 1

- Start with vertex v at the start point
- Update the *label values* for vertices adjacent to *v*

-4

- Start with vertex v at the start point
- Update the *label values* for vertices adjacent to *v*
- Update the *fringe* F by removing v and adding vertices adjacent to v

- Start with vertex v at the start point
- Update the *label values* for vertices adjacent to *v*
- Update the *fringe* F by removing v and adding vertices adjacent to v
- Update v to be the vertex in F with the lowest label value

- Start with vertex v at the start point
- Update the *label values* for vertices adjacent to *v*
- Update the *fringe* F by removing v and adding vertices adjacent to v
- Update v to be the vertex in F with the lowest label value
- Add the new v to the tree along with the edge that let it achieve its minimal label value

- Start with vertex v at the start point
- Update the *label values* for vertices adjacent to *v*
- Update the *fringe* F by removing v and adding vertices adjacent to v
- Update v to be the vertex in F with the lowest label value
- Add the new v to the tree along with the edge that let it achieve its minimal label value
- Repeat until you reach the destination

One More Example

590

æ

Dr. Chuck Rocca roccac@wcsu.edu

http://sites.wcsu.edu/roccac

C. F. Rocca Jr. (WCSU)

26 / 26