Trees

Dr．Chuck Rocca

 roccac＠wcsu．eduhttp：／／sites．wcsu．edu／roccac

MACRICOSTAS
SCHOOL OF ARTS
8 SCIENCES
 클

Table of Contents

(1) Tree Terminology

(2) Vertices and Edges
(3) Binary Trees
4) Spanning Trees

C. F. Rocca Jr. (WCSU)

Tree Terminology

Tree Terminology

Tree Terminology

〈ロ〉4甸〉4 三＞4 三

Tree Terminology

Tree Terminology

Tree Terminology

Tree Terminology

三

Tree Terminology

Table of Contents

(1) Tree Terminology

(2) Vertices and Edges
(3) Binary Trees
4) Spanning Trees

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1 .

Degree 1 Vertex

－pick a vertex v

Degree 1 Vertex

- pick a vertex v
- while $\operatorname{deg}(v)>1$:

Degree 1 Vertex

- pick a vertex v
- while $\operatorname{deg}(v)>1$:
- move to an un-visited vertex

Degree 1 Vertex

- pick a vertex v
- while $\operatorname{deg}(v)>1$:
- move to an un-visited vertex
- call it v

Degree 1 Vertex

- pick a vertex v
- while $\operatorname{deg}(v)>1$:
- move to an un-visited vertex
- call it v

三

Degree 1 Vertex

－pick a vertex v
－while $\operatorname{deg}(v)>1$ ：
－move to an un－visited vertex
－call it v
$4 \square>4$ 甸 1 引 4 •

Degree 1 Vertex

－pick a vertex v
－while $\operatorname{deg}(v)>1$ ：
－move to an un－visited vertex
－call it v
$4 \square>4$ 岛 14 三 4 引

Degree 1 Vertex

- pick a vertex v
- while $\operatorname{deg}(v)>1$:
- move to an un-visited vertex
- call it v

Degree 1 Vertex

－pick a vertex v
－while $\operatorname{deg}(v)>1$ ：
－move to an un－visited vertex
－call it v
－Terminates as long as there are no circuits and the graph is finite．

三

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1 .

Theorem

A tree with n vertices has exactly $n-1$ edges.

$n-1$ Edges in a Tree

- "Obvious" if there are just two vertices.

$n-1$ Edges in a Tree

- "Obvious" if there are just two vertices.
- By previous lemma there is at least 1 leaf

$n-1$ Edges in a Tree

- "Obvious" if there are just two vertices.
- By previous lemma there is at least 1 leaf
- Use induction with the subgraph not containing the leaf

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1 .

Theorem
 A tree with n vertices has exactly $n-1$ edges.

Theorem

A connected graph with n vertices and $n-1$ edges is a tree.

Vertices and Edges

Lemma

Trees with two or more vertices has a vertex of degree 1 .

Theorem

A tree with n vertices has exactly $n-1$ edges.

Theorem

A connected graph with n vertices and $n-1$ edges is a tree.

Theorem

A graph with at least as many edges as vertices has a circuit.

Table of Contents

(1) Tree Terminology

(2) Vertices and Edges
(3) Binary Trees
(4) Spanning Trees

Binary Tree

Trees

Full Binary Tree

Every parent has two children.

Complete Binary Tree

A full binary tree in which every leaf is at the same height.

Theorems on Binary Trees

Theorem

A full binary tree with k internal vertices has $2 k+1$ total vertices and $k+1$ leaves.

Full Trees and Vertices

- All internal vertices have 2 children, $2 k$ children.

Full Trees and Vertices

- All internal vertices have 2 children, $2 k$ children.
- Only one vertex has no parent, Root.

Full Trees and Vertices

- All internal vertices have 2 children, $2 k$ children.
- Only one vertex has no parent, Root.
- Total Vertices $=2 k+1$.

Full Trees and Vertices

- All internal vertices have 2 children, $2 k$ children.
- Only one vertex has no parent, Root.
- Total Vertices $=2 k+1$.
- Leaves aren't internal, Leaves $=2 k+1-k=k+1$.

Theorems on Binary Trees

Theorem

A full binary tree with k internal vertices has $2 k+1$ total vertices and $k+1$ leaves.

Theorem

Given a binary tree with height h and t leaves,

$$
t \leq 2^{h} \text { and } \log _{2}(t) \leq h
$$

Leaves and Height

$$
\text { - } h=0 \Rightarrow 2^{h}=2^{0}=1 \geq t
$$

Leaves and Height

- $h=0 \Rightarrow 2^{h}=2^{0}=1 \geq t$
- $h=k+1$ and Root has one child

$$
\begin{aligned}
2^{k+1} & =2 \cdot 2^{k} \\
& \geq 2^{k}+1 \\
& \geq t_{l}+1 \\
& =t
\end{aligned}
$$

Leaves and Height

- $h=0 \Rightarrow 2^{h}=2^{0}=1 \geq t$
- $h=k+1$ and Root has one child
- $h=k+1$ and Root has two children

$$
\begin{aligned}
2^{k+1} & =2 \cdot 2^{k} \\
& \geq t_{1}+t_{r} \\
& =t
\end{aligned}
$$

Leaves and Height

－$h=0 \Rightarrow 2^{h}=2^{0}=1 \geq t$
－$h=k+1$ and Root has one child
－$h=k+1$ and Root has two children
－$t \leq 2^{h}$ implies $\log _{2}(t) \leq h$

Theorems on Binary Trees

Theorem

A full binary tree with k internal vertices has $2 k+1$ total vertices and $k+1$ leaves.

Theorem

Given a binary tree with height h and t leaves,

$$
t \leq 2^{h} \text { and } \log _{2}(t) \leq h
$$

Corollary

A complete binary tree of height h has exactly $t=2^{h}$ leaves.

Table of Contents

(1) Tree Terminology

(2) Vertices and Edges
(3) Binary Trees
4) Spanning Trees

Spanning Tree Definition and Examples

三

Spanning Tree Definition and Examples

Spanning Tree Definition and Examples

0
$4 \square>4$ 甸 4 三 1 ㅍ
三

Spanning Tree Definition and Examples

三

Spanning Tree Definition and Examples

三

Spanning Tree Definition and Examples

8

三

Spanning Tree Definition and Examples

Kruskal's Minimal Tree Algorithm

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are $n-1$ edges

Kruskal's Minimal Tree Algorithm

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are $n-1$ edges

Kruskal's Minimal Tree Algorithm

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are $n-1$ edges

Kruskal's Minimal Tree Algorithm

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are $n-1$ edges

Kruskal's Minimal Tree Algorithm

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are $n-1$ edges

Kruskal's Minimal Tree Algorithm

- Find the unused edge with the lowest value
- If it doesn't create a circuit add it to the tree
- Repeat until there are $n-1$ edges

Prim's Minimal Tree Algorithm

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to exactly one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat $n-1$ times

Prim's Minimal Tree Algorithm

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to exactly one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat $n-1$ times

Prim's Minimal Tree Algorithm

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to exactly one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat $n-1$ times

Prim's Minimal Tree Algorithm

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to exactly one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat $n-1$ times

Prim's Minimal Tree Algorithm

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to exactly one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat $n-1$ times

Prim's Minimal Tree Algorithm

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to exactly one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat $n-1$ times

Prim's Minimal Tree Algorithm

- Pick a starting vertex to add to the tree
- Add the edge that has least weight and connects to exactly one vertex already in the tree
- Add the vertex on the other end of the edge to the tree
- Repeat $n-1$ times

Dijkstra's "Shortest" Path Algorithm

Baltimore to Boston

Round 1
$v=B A L$
$F=\{D C, P H L, N Y\}$

City	Old Label	New Label
ALB	$(\infty,-)$	$(\infty,-)$
BAL	$(0,-)$	$(0,-)$
BOS	$(\infty,-)$	$(\infty,-)$
DC	$(\infty,-)$	$(10, B A L)$
NY	$(\infty,-)$	$(82, B A L)$
PHL	$(\infty,-)$	$(17, B A L)$

Dijkstra's "Shortest" Path Algorithm

Baltimore to Boston

Dijkstra's "Shortest" Path Algorithm

Baltimore to Boston

Round 3
$v=P H L$
$F=\{N Y, B O S\}$

City	Old Label	New Label
ALB	$(\infty,-)$	$(\infty,-)$
BAL	$(0,-)$	$(0,-)$
BOS	$(85, D C)$	$(85, D C)$
DC	$(10, B A L)$	$(10, B A L)$
NY	$(70, D C)$	$(34, P H L)$
PHL	$(17, B A L)$	$(17, B A L)$

Dijkstra's "Shortest" Path Algorithm

Baltimore to Boston

Dijkstra's "Shortest" Path Algorithm

Baltimore to Boston

Round 5
$v=A L B$
$F=\{B O S\}$

City	Old Label	New Label
ALB	$(44, N Y)$	$(44, N Y)$
BAL	$(0,-)$	$(0,-)$
BOS	$(49, N Y)$	$(49, N Y)$
DC	$(10, B A L)$	$(10, B A L)$
NY	$(34, P H L)$	$(34, P H L)$
PHL	$(17, B A L)$	$(17, B A L)$

Dijkstra's "Shortest" Path Algorithm

Baltimore to Boston

$$
L(B O S)=(49, N Y) \leftarrow L(N Y)=(34, P H L) \leftarrow L(P H L)=(17, B A L)
$$

Dijkstra＇s＂Shortest＂Path Algorithm

－Start with vertex v at the start point

Dijkstra's "Shortest" Path Algorithm

- Start with vertex v at the start point
- Update the label values for vertices adjacent to v

Dijkstra's "Shortest" Path Algorithm

- Start with vertex v at the start point
- Update the label values for vertices adjacent to v
- Update the fringe F by removing v and adding vertices adjacent to v

Dijkstra's "Shortest" Path Algorithm

- Start with vertex v at the start point
- Update the label values for vertices adjacent to v
- Update the fringe F by removing v and adding vertices adjacent to v
- Update v to be the vertex in F with the lowest label value

Dijkstra's "Shortest" Path Algorithm

- Start with vertex v at the start point
- Update the label values for vertices adjacent to v
- Update the fringe F by removing v and adding vertices adjacent to v
- Update v to be the vertex in F with the lowest label value
- Add the new v to the tree along with
 the edge that let it achieve its minimal label value

Dijkstra＇s＂Shortest＂Path Algorithm

－Start with vertex v at the start point
－Update the label values for vertices adjacent to v
－Update the fringe F by removing v and adding vertices adjacent to v
－Update v to be the vertex in F with the lowest label value
－Add the new v to the tree along with
 the edge that let it achieve its minimal label value
－Repeat until you reach the destination

三

One More Example

Trees

Dr. Chuck Rocca

 roccac@wcsu.eduhttp://sites.wcsu.edu/roccac

MACRICOSTAS
SCHOOL OF ARTS
8 SCIENCES

